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Keywords: Cardiac arrhythmias are a group of conditions that have a high
Cardiac Arrhythmias, incidence and prevalence worldwide, and receive considerable
Electrocardiogram, attention from the medical community because they are
Deep Learning, associated with several risk factors and can cause serious
Leads impairment of the individual's cardiac function in more critical

cases. The electrocardiogram is the main tool for the diagnosis of
cardiac arrhythmias because it is considered flexible, non-
invasive, and low-cost. The so-called 12-lead system is the most
widely used ECG configuration in clinical practice and has been
considered for several years as the gold standard for detecting
cardiac arrhythmias. Although this configuration is widely
popular, there are situations in which it may be more interesting
to use simpler ECG configurations to expand the tool to
scenarios other than traditional healthcare environments, such as
using mobile devices for cardiac monitoring. These scenarios
require using simplified ECG configurations, using a single lead
or a subset of leads, due to technical restrictions of the devices or
limitations of the scenario itself. Knowing the performance of
each lead when considered individually is important for defining
which leads are most suitable for use in each scenario. This study
presents a comparative analysis of the leads of the 12-lead
system for predicting cardiac arrhythmias employing a deep
learning-based approach and a large dataset containing diagnoses
of 32 types of arrhythmias. A large public dataset well-annotated
according to international standards for arrhythmia diagnosis was
used. Both individual results on the performance of each lead
and patterns involving groups of leads that share common
characteristics were highlighted. The results presented allow
healthcare professionals to be equipped with quantitative data
that can provide a robust basis for decision-making and overall
improvement of medical processes. The results demonstrate the
feasibility of using technologies based on Atrtificial Intelligence
as tools to support cardiology practice and the expansion of
cardiac monitoring practices to environments outside clinics and
hospitals.
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1. Introduction

Cardiac arrhythmias are a group of conditions that receive considerable attention from the
medical community because they are associated with several risk factors and, in more critical
cases, can compromise cardiac function and lead to sudden death from fulminant infarction.
This condition has a high incidence and prevalence worldwide, affecting a significant portion
of the population. According to Li et al. (2022), the concern about this disease can be justified
by the results presented by a study that analyzed epidemiological data from 204 countries and
reported an incidence of approximately 4.71 million cases and a prevalence of approximately
59.7 million cases in 2019. The scenario presented in that study reinforces the importance of
investing in applying strategies and technologies to support the prevention and treatment of
arrhythmias.

Among the alternatives proposed to respond to the challenges imposed by this scenario is the
use of technologies based on Artificial Intelligence (Al) for the automatic detection and
classification of cardiac arrhythmias. According to Nagarajan et al. (2021), the growing
interest in using Al-based technologies in cardiology practice can be evidenced by the large
amount of research related to the topic published in the last few years. This interest has been
motivated by factors such as the evolution of Machine Learning and Deep Learning
techniques, the increase in available computing power, and the dissemination of sensor
technologies and wearable devices. As highlighted by Singh et al. (2023), several researchers
have presented technologies based on Machine Learning and Deep Learning for diagnosing
cardiac arrhythmias using data from Electrocardiogram (ECG) exams.

The ECG is a device that records the electrical signals generated by the heart through
electrodes attached to the skin. According to iMotions (2024), ECG has become widely used
in medical practice because it is a non-invasive and low-cost technique that allows obtaining
high-resolution data. This characteristic makes the ECG a more cost-effective option when
compared to other advanced imaging exam modalities or invasive procedures. Bloe (2021)
states that another characteristic that favors the use of the ECG is the flexibility of allowing
different configurations of the number of electrodes, which allows its use in different
scenarios.

The most widely used ECG configuration is the so-called 12-lead system. This system uses
10 electrodes positioned to generate 12 leads (or derivations) that correspond to different
points of view (or angles) of myocardial activity. According to Jarvis (2021), considering the
12 leads in an ECG exam is the most common practice in clinics and hospitals, and has been
considered for several years as the gold standard for detecting cardiac arrhythmias. Meek and
Morris (2002) highlight that the 10-electrode configuration provides the advantage of
providing a more complete and detailed view of myocardial activity. However, there are
situations in which it may be more interesting to use only a subset of the leads to reduce the
amount of data processed to optimize diagnostic time and reduce the complexity of the
procedure. Cardiac monitoring by wearable devices is an example of a scenario in which only
one lead or a subset of leads is used due to the processing and storage capacity limitations of
these devices. In addition, emergency or rapid triage situations may also benefit from using a
subset of leads, as this can expedite patient care.

Identifying which leads provide the best accuracy in classifying certain arrhythmias is
essential in scenarios where a subset of leads must be selected for use. Knowing which leads
are most relevant for diagnosing each type of arrhythmia can contribute to faster and more
accurate diagnoses. This study presents a comparative analysis between the 12 leads for
classifying arrhythmias using a Deep Learning model and a large dataset containing
diagnoses of 32 types of arrhythmias. This study aims to present insights and patterns to



European Journal of Engineering Science and Technology, 8(1): 1-12, 2025

optimize the use of ECG in conjunction with Deep Learning techniques for classifying
arrhythmias.

2. Literature Review

The cardiac cycle is made up of the set of events that occur within the heart's valves and
chambers between the beginning of one heartbeat and the next. These events pump oxygen-
poor blood to the lungs for oxygenation and oxygenated blood to the aorta for distribution
throughout the body. The cycle is executed through synchronized myocardial contractions
and relaxations, ensuring proper blood flow throughout the cardiovascular system. This
process is regulated by specialized cells that generate electrical signals propagated across the
myocardium to control these movements.

Disruptions in the regular sequence of these events, known as cardiac arrhythmias, often
result from diseases or disorders of the cardiovascular system. According to Kingma et al.
(2003), arrhythmias may stem from structural abnormalities in the myocardium or risk factors
related to genetic or environmental conditions. Arrhythmias are classified by heart rhythm
speed (tachycardia or bradycardia) and origin (upper or lower heart chambers). Chakrabarti
and Stuart (2005) highlight that they can result from abnormalities in signal generation or
conduction within the myocardium.

The ECG is the primary diagnostic tool for identifying and classifying cardiac arrhythmias.
The ECG visualizes myocardial electrical activity as a trace, where the vertical axis
represents voltage (in microvolts) and the horizontal axis represents time (in milliseconds).
Figure 1 illustrates an ECG trace showing the 12 leads generated by the 10 electrodes of the
12-lead system. According to Becker (2006), the trace exhibits a regular sequence of waves in
healthy hearts, while arrhythmic hearts show irregular intervals, extra waves, altered wave
morphology, or wave absence.

Figure 1. Example of an ECG exam

According to Javis (2021), a lead represents the electrical potential difference between two
points measured using body-attached electrodes. The 12-lead system includes precordial
leads (V1 to V6), derived from chest electrodes, and limb leads (I, II, III, aVR, aVL, and
aVF), derived from limb electrodes. Figure 2 shows the positioning of electrodes for
generating precordial leads and figure 3 shows the positioning of electrodes for generating
limb leads. Precordial leads provide a transverse perspective of the heart's activity, while limb
leads offer a frontal view. Together, they enable a three-dimensional analysis of myocardial
function. Meek and Morris (2002) describe four key anatomical perspectives provided by this
arrangement: the inferior surface (leads II, III, and aVF), the anterior surface (leads V1 to
V4), the lateral surface (leads I, aVL, V5, and V6), and the right atrium and left ventricular
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cavity (leads V1 and aVR). Figure 4 shows the heart's activity visualized from the vertical
plane (frontal perspective) through the limb leads and the horizontal plane (transverse
perspective) through the precordial leads.

Figure 2. Precordial leads placement
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Figure 4. The perspective of the leads

According to Hibbitt (2024), the 12-lead system has the advantage of being highly
informative because it allows multiple views of cardiac activity, but is typically confined to
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clinical settings due to the complexity of the operation and the number of electrodes required.
Wearable ECG devices have emerged as a promising alternative, extending cardiac
monitoring beyond healthcare environments and enabling early diagnosis. However, these
devices often rely on a single lead or a reduced set due to technical constraints. Choi et al.
(2024) and Funston et al. (2022) highlight that studies evaluating the accuracy of a single lead
for cardiac diagnoses have been carried out to verify the potential of using wearable devices
as tools to aid in the practice of cardiological monitoring and diagnosis.

Several studies have proposed adopting Al-based technologies in medical practice in recent
years. Alowais et al. (2023) highlight several possible applications of Al in tasks such as
disease diagnosis, selection of treatments, laboratory tests, drug discovery, recommendation
systems through virtual assistants and chatbots, and mental health support. As stated by the
authors, Al-based tools have the potential to provide improved accuracy and efficiency in
medical processes, as well as the optimization of the use of resources, cost reduction, and
time savings.

According to Bajwa et al. (2021), despite the advances made in this field, there are still
several challenges to the widespread adoption of Al-based tools in clinical practice. The
authors state that there is a need to address issues related to the availability and quality of
data, aspects associated with ethics and regulations, and difficulty in ensuring security and
data privacy. Alowais et al. (2023) stated the need to address issues related to bias and lack of
user expertise to increase users' confidence in the outcomes obtained using these tools.

3. Methods

3.1. Dataset Description

The dataset generated by the work developed by Liu et al. (2022) was used in this study. The
data were collected in an experiment carried out at Shandong Provincial Hospital (Jinan,
China) between 2019 and 2020. A total of 25,770 ECG records were generated from 24,666
individuals who underwent the exams. Liu et al. (2022) highlight that the lack of large-scale
public ECG datasets and the standardization problems found in existing datasets motivated
the development of this work. The dataset was made publicly available for use in research
related to the classification of cardiac arrhythmias.

An equipment configured according to the 12-lead system with a sampling frequency of 500
Hz was used to perform the exams. Each individual was monitored for a time interval that
varied from 10 to 60 seconds. A cardiologist assigned the diagnosis to each exam following
the standard recommended by the American Heart Association (AHA). Mason et al. (2007)
highlight that the statement proposed by the AHA suggests a classification with 117 types of
arrhythmias and has as its main objective the improvement of the accuracy of diagnoses
through the use of a concise list of standardized terms. The cardiologist considered 44
classifications among the 117 suggested by the AHA and certain exams received more than
one diagnosis. Table 1 presents the 44 classifications considered in this experiment.
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Table 1. Classification of arrhythmias as suggested by the AHA statement.

Code | Description Code | Description
1 Normal ECG 102 Left posterior fascicular block
21 Sinus tachycardia 104 Left bundle-branch block
22 Sinus bradycardia 105 Incomplete right bundle-branch block
23 Sinus arrhythmia 106 Right bundle-branch block
30 Atrial premature complex(es) 108 Ventricular preexcitation
31 Atrial premature complexes, 120 Right-axis deviation
nonconduct
36 Junctional premature complex(es) 121 Left-axis deviation
37 Junctional escape complex(es) 125 Low voltage
50 Atrial fibrillation 140 Left atrial enlargement
51 Atrial flutter 142 Left ventricular
54 Junctional tachycardia 143 Right ventricular hypertrophy
60 Ventricular premature complex(es) 145 ST deviation
80 Short PR interval 146 ST deviation with T-wave change
81 AV conduction ratio N:D 147 T-wave abnormality
82 Prolonged PR interval 148 Prolonged QT interval
33 ISecond—degree AV block, Mobitz type 150 TU fusion
Second-degree AV block, Mobitz type ST-T change due to ventricular
84 153
11 hypertrophy
85 2:1 AV block 155 Early repolarization
86 AV block, varying conduction 160 Anterior MI
87 AV block, advanced (high-grade) 161 Inferior MI
88 AV block, complete (third-degree) 165 Anteroseptal MI
101 Left anterior fascicular block 166 Extensive anterior MI

The dataset has 12 features that represent the 12 leads obtained by the ECG at a given time.
Each feature stores the voltage in microvolts (LV) recorded by the set of electrodes that
generate a given lead. The dataset target stores the code of the type of arrhythmia attributed to
the diagnosis. Each instance of the dataset represents the 12 views of cardiac activity at a
given time. The number of samples generated in each exam varied between 5,000 and 30,000
records, taking into account the sampling frequency used and the duration of each exam.

3.2. Preprocessing

For this study, it was chosen to use only the first 10 seconds of each exam for standardization
reasons. The records were resampled to a sampling frequency of 125 Hz to reduce the data
processed and the computational resources required to train the model. Thus, each ECG
record now contains 1,250 samples. Only the first diagnosis attributed to each ECG was
considered for cases in which the exam received more than one classification.

No problems with missing or inconsistent data were found in the exploratory data analysis,
thus eliminating the need to perform specific procedures to deal with these types of problems.
However, it was necessary to use robust normalization techniques to adjust the data due to the
presence of outliers and an asymmetry in the data distribution that could affect the training
performance.

The dataset was restructured into a "time window" format. The 1,250 samples corresponding
to each ECG exam were converted to a single record composed of 1,250 features, in which
each feature stores the voltage captured by a specific lead at a given instant in time. This data
structuring aligns with the concepts of Cardiology since doctors analyze the existence of
patterns in electrical waves over time. The dataset now contains 25,770 samples (quantity of
ECG exams performed).
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Table 2 shows the distribution of classes in the dataset. The data were considerably
unbalanced, as 53% of the samples belonged to the AHA code 1, while there were certain
classes with less than 1% of the samples. The training set was balanced using upsampling and
downsampling techniques. The Synthetic Minority Over-sampling (SMOTE) technique was
used to upsample the data. This technique consists of generating synthetic samples from the
samples existing in the minority class to balance the dataset. It was necessary to remove the
classifications that had less than 6 samples (AHA codes 31, 37, 84, 87, 102, 143, 148, and
152) because the SMOTE technique requires a minimum number of samples in each class to
generate synthetic samples. The training set now contains 200,000 samples distributed among
32 classes. The test set remained with 2,577 samples (10%).

Table 2. Dataset balance analysis

AHA Code Quantity | % Iéf;ld[: Quantity %

1 13905 53.96 165 64 0.25
22 2659 10.32 104 62 0.24
147 1334 5.18 36 44 0.17
23 1123 4.36 160 35 0.14
145 1045 4.06 155 28 0.11
105 917 3.56 108 22 0.09
60 786 3.05 88 20 0.08
21 723 2.81 54 12 0.05
50 663 2.57 80 9 0.03
146 540 2.10 83 8 0.03
106 473 1.84 140 7 0.03
30 384 1.49 166 7 0.03
125 201 0.78 102 5 0.02
120 122 0.47 31 4 0.02
121 111 0.43 148 4 0.02
82 98 0.38 87 3 0.01
142 96 0.37 152 3 0.01
51 94 0.36 37 2 0.01
101 77 0.30 84 2 0.01
161 77 0.30 143 1 0.00

3.3. Model Training

This study is based on the work presented by Dos Santos (2024). That study proposed the use
of a Convolutional Neural Network (CNN) to detect cardiac arrhythmias using the same
dataset, however, using only data from the feature corresponding to Lead II. Lead II was
selected for that work because it is considered the most used lead due to its location being
close to the cardiac axis and providing better alignment with the direction of transmission of
electrical signals through the myocardium. The choice to use a CNN model stems from its
recent success in time series analysis by outperforming other types of Deep Learning models.
The proposed CNN model proved to be a high-precision tool for detecting cardiac
arrhythmias by achieving a high accuracy in its predictions. A similar CNN model was used
in this study.

Figure 5 shows a representation of the CNN model architecture. The feature extraction block
is composed of 4 convolutional layers and 2 Max Pooling layers, while the pattern detection
block is composed of 1 Flatten layer, 1 Fully Connected layer, and 1 output layer. The
convolutional layers and Fully Connected layers are followed by Batch Normalization layers.
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The use of 4 convolutional layers provided better performance than other configurations with
3 layers that were also tested. Batch Normalization layers were used to avoid the gradient
vanishing problem and make training more stable.

Table 3 shows the configuration of the model's hyperparameters. The Rectified Linear
Activation Unit (ReLU) activation function was used because it presents simplicity of
execution and computational efficiency when compared to other popular activation functions.
The "he normal" initializer was used because it gives better results in layers that use the
ReLU function due to its adaptation to the characteristics of ReLU to improve the efficiency
of gradient flow through the network.

The CNN model was developed with the Tensorflow/Keras library. The training was run 12
times and each run only used data from one of the 12 leads. The training was performed in
300 epochs and used the Adam optimizer configured with a learning rate of 0.001. The
standard batch size of 32 was used to strike a balance between performance and consumption
of computational resources. The training was performed using the cross-validation technique
(10 folds).
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Figure 5. Representation of CNN architecture.
Table 3. Hyperparameters setup.

Layer Layer type Filters Kernel size | Activation Kernel initializer Units

1 ConvlD 8 3 ReLU he uniform -

2 BachNormalization | - - - - _

3 ConvlD 8 3 ReLU he uniform -

4 BachNormalization | - - - - -

5 MaxPooling1 D - - - - -

6 ConvlD 16 5 ReLU he uniform -

7 BachNormalization | - - - - _

8 ConvlD 16 5 ReLU he uniform -

9 BachNormalization | - - - - -

10 MaxPooling1 D - - - - -

11 Flatten - - - - -

12 Dense - - ReLU he uniform 128

13 BachNormalization | - - - - -

14 Dense - - Softmax - 32

4. Results and Discussion

This section presents the results obtained from the training of the CNN model using the 12
ECG leads and discusses their implications for arrhythmia detection and clinical practice.

Table 4 presents the accuracies obtained across the 12 training runs, highlighting the superior
performance of aVR. The best accuracies were obtained using leads aVR and II, respectively.
These results suggest that the anatomical positioning of these two leads in relation to
myocardial electrical currents favors their sensitivity for identifying cardiac cycle waves and
enables the detection of different types of arrhythmias. The accuracy obtained using the lead
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V6 was lower than that obtained using the other leads. This result suggests that the extreme
lateral positioning of this lead limits its sensitivity for capturing cardiac cycle waves and
makes it difficult to detect types of arrhythmias originating in locations distant from the left
chambers of the myocardium.

Table 4. Model accuracy

Lead %

aVR 92.09
Lead II 91.91
Lead I 90.43
\2! 90.23
V3 90.03
V4 89.98
aVF 89.19
V5 88.38
Lead III 87.40
aVL 85.80
V2 85.70
V6 84.49

Table 5 presents detailed training metrics. The best F1-Score rate obtained for each type of
arrhythmia among the 12 training runs is presented and which were the leads with which it
was possible to achieve the best rate. The F1-Score metric was used because it is a robust
metric and provides a more balanced view of model performance.

Table 5. Detailed metrics

Condition F1-Score | Leads

Normal ECG 0.95 Lead II, aVR
Sinus tachycardia 0.96 aVR

Sinus bradycardia 0.96 Lead I, Lead II, aVR, V1, V3
Sinus arrhythmia 0.84 Lead I

Atrial premature complex(es) 0.85 Lead II, V1, V3
Junctional premature complex(es) 0.90 V3

Atrial fibrillation 0.91 Lead II, V1
Atrial flutter 0.92 Lead II, V3
Junctional tachycardia 0.87 Leadl, Lead II, V1, V5
Ventricular premature complex(es) | 0.89 aVR

Short PR interval 0.94 V3

Prolonged PR interval 0.88 Lead II, aVR
Second-degree AV block, Mobitz | 0.88 V5

type

AV block, complete (third-degree) | 0.95 V3

Left anterior fascicular block 0.91 Lead II

Left bundle-branch block 0.93 Lead I
Incomplete right bundle-branch | 0.84 Lead I, aVR, V1
block

Right bundle-branch block 0.96 V1

Ventricular preexcitation 0.91 V4

Right-axis deviation 0.90 V3

Left-axis deviation 0.88 Lead II, aVF
Low voltage 0.87 V3

Left atrial enlargement 1.00 Lead II

Left ventricular 0.87 Lead II, aVR
ST deviation 0.85 aVR

ST deviation with T-wave change 0.86 Lead II

T-wave abnormality 0.86 Lead II

Early repolarization 0.94 Lead II
Anterior MI 0.97 V3
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Inferior MI 0.90 V4
Anteroseptal MI 0.93 V3
Extensive anterior MI 0.92 aVR, V3

Considering individual results; leads II, V3, and aVR were the best leads for identifying most
types of arrhythmia, which suggests that these leads provide a comprehensive view of the
heart's electrical activity and enable the detection of arrhythmias originating from different
locations in the myocardium. Leads III, aVL, V2, and V6 were not the best for any type of
arrhythmia, suggesting that these leads have limitations in their sensitivity and are more
indicated for identifying specific types of arrhythmias.

The superiority presented by lead II in the experiment is aligned with the belief highlighted
by Meek and Morris (2002) that the characteristics of lead II make it very accurate and
reliable for identifying different types of arrhythmias, and this factor makes it the most used
lead in clinical practice. However, the good performance achieved by other leads
demonstrates that there are alternatives for different ECG configurations with the possibility
of obtaining high precision in arrhythmia detection.

The aVR lead achieved the best performance for identifying the normal condition (without
arrhythmia). This result reinforces the thesis that the anatomical positioning of this lead
facilitates the capture of subtle deviations in the electrical axis that would indicate abnormal
conditions and this characteristic can simplify the detection of normal conditions. The
performance of this lead, which is often undervalued in clinical practice, demonstrated that it
can play an important role in detecting normal conditions and different types of arrhythmias.

The results also suggest patterns related to groups of disorders that share electrocardiographic
characteristics or location of origin. Changes in sinus rhythm were better identified by limb
leads. Supraventricular changes originating in the atrioventricular node were better detected
by most leads, as well as conduction disturbances resulting from blockages and anatomical
changes, such as deviations in the cardiac axis or enlargement of the chambers. Leads II and
aVR showed the highest precision for detecting changes in the ST segment and T wave. The
myocardial infarctions were better detected by precordial leads. Finally, atrial fibrillation, one
of the most prevalent cardiac arrhythmias, was most accurately identified by leads Il and V1.

The identified patterns could be useful for developing ECG applications in wearable devices,
in which subsets of the 12-lead system must be used due to the limitations of these devices.
Quantitative data on the performance of each lead is useful to support decisions about which
leads to use in a given context. These alternatives contribute to the expansion of healthcare
services by helping to reduce limitations associated with cardiac monitoring processes.

Wearable devices equipped with ECGs and highly accurate Al-based systems for diagnosing
arrhythmias enable patients to be monitored at different times of the day. This characteristic is
desirable because the symptoms of this disease can manifest themselves intermittently and
doctors may be unable to make a diagnosis when the patient is outside clinics or hospitals. In
this way, possible abnormalities detected by the system can be recorded for later analysis or
transmitted in real-time to the responsible doctor. Such systems can also send alerts if a
specific patient is affected by some arrhythmia considered more critical, which can be useful
for patients who need the help of other people because they have some limitation or disability
that prevents them from taking the necessary actions on their own.

5. Limitations and Future Direction

The dataset used in the study is comprehensive and well annotated, however, it was derived
from an experiment carried out under specific conditions such as geographic location,

10
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population studied, and ECG equipment used. These factors could introduce biases or
limitations in generalizing the results for different populations or scenarios. As a future study,
it is suggested to replicate this work using other datasets collected in distinct scenarios to
verify that the results obtained are robust and generalizable. It is recommended to use
datasets collected in experiments involving patients with different profiles and using distinct
data acquisition protocols.

Using Al-based systems in environments outside clinics and hospitals presents significant
challenges due to the possibility of having a wide variety of data different from those used in
training and the quality of the data being affected by noise. There may also be restrictions
related to regulatory issues, as in uncontrolled environments there could be difficulties in
ensuring that data is being collected following the protocols required for the exams. Future
studies addressing these issues and proposing alternatives to mitigate such problems could
contribute significantly to the field.

6. Conclusion

The results obtained demonstrate the feasibility of using individual leads or subsets of the 12-
lead system for the detection of arrhythmias with the possibility of obtaining high accuracy in
predictions generated by Deep Learning models. These findings suggest significant
opportunities for optimizing ECG use, which can also reduce costs associated with the
cardiac monitoring process. The results may also reinforce confidence in Al-based
technologies as tools to support cardiology practice and encourage the development of ECG
applications for use in environments outside of clinics and laboratories.

The patterns identified in the analysis of detailed metrics can provide useful information for
healthcare professionals. This knowledge can improve the efficiency of exams, reduce the
time required for diagnosis, and enhance the overall quality of medical processes. The
quantitative data provided prevent decisions from being based solely on hypotheses, offering
a robust foundation for clinical practice.
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