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 Cardiac arrhythmias are a group of conditions that have a high 

incidence and prevalence worldwide, and receive considerable 

attention from the medical community because they are 

associated with several risk factors and can cause serious 

impairment of the individual's cardiac function in more critical 

cases. The electrocardiogram is the main tool for the diagnosis of 

cardiac arrhythmias because it is considered flexible, non-

invasive, and low-cost. The so-called 12-lead system is the most 

widely used ECG configuration in clinical practice and has been 

considered for several years as the gold standard for detecting 

cardiac arrhythmias. Although this configuration is widely 

popular, there are situations in which it may be more interesting 

to use simpler ECG configurations to expand the tool to 

scenarios other than traditional healthcare environments, such as 

using mobile devices for cardiac monitoring. These scenarios 

require using simplified ECG configurations, using a single lead 

or a subset of leads, due to technical restrictions of the devices or 

limitations of the scenario itself. Knowing the performance of 

each lead when considered individually is important for defining 

which leads are most suitable for use in each scenario. This study 

presents a comparative analysis of the leads of the 12-lead 

system for predicting cardiac arrhythmias employing a deep 

learning-based approach and a large dataset containing diagnoses 

of 32 types of arrhythmias. A large public dataset well-annotated 

according to international standards for arrhythmia diagnosis was 

used. Both individual results on the performance of each lead 

and patterns involving groups of leads that share common 

characteristics were highlighted. The results presented allow 

healthcare professionals to be equipped with quantitative data 

that can provide a robust basis for decision-making and overall 

improvement of medical processes. The results demonstrate the 

feasibility of using technologies based on Artificial Intelligence 

as tools to support cardiology practice and the expansion of 

cardiac monitoring practices to environments outside clinics and 

hospitals. 

https://doi.org/10.33422/ejest.v8i1.1472
https://creativecommons.org/licenses/by/4.0/
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1. Introduction 

Cardiac arrhythmias are a group of conditions that receive considerable attention from the 

medical community because they are associated with several risk factors and, in more critical 

cases, can compromise cardiac function and lead to sudden death from fulminant infarction. 

This condition has a high incidence and prevalence worldwide, affecting a significant portion 

of the population. According to Li et al. (2022), the concern about this disease can be justified 

by the results presented by a study that analyzed epidemiological data from 204 countries and 

reported an incidence of approximately 4.71 million cases and a prevalence of approximately 

59.7 million cases in 2019. The scenario presented in that study reinforces the importance of 

investing in applying strategies and technologies to support the prevention and treatment of 

arrhythmias. 

Among the alternatives proposed to respond to the challenges imposed by this scenario is the 

use of technologies based on Artificial Intelligence (AI) for the automatic detection and 

classification of cardiac arrhythmias. According to Nagarajan et al. (2021), the growing 

interest in using AI-based technologies in cardiology practice can be evidenced by the large 

amount of research related to the topic published in the last few years. This interest has been 

motivated by factors such as the evolution of Machine Learning and Deep Learning 

techniques, the increase in available computing power, and the dissemination of sensor 

technologies and wearable devices. As highlighted by Singh et al. (2023), several researchers 

have presented technologies based on Machine Learning and Deep Learning for diagnosing 

cardiac arrhythmias using data from Electrocardiogram (ECG) exams. 

The ECG is a device that records the electrical signals generated by the heart through 

electrodes attached to the skin. According to iMotions (2024), ECG has become widely used 

in medical practice because it is a non-invasive and low-cost technique that allows obtaining 

high-resolution data. This characteristic makes the ECG a more cost-effective option when 

compared to other advanced imaging exam modalities or invasive procedures. Bloe (2021) 

states that another characteristic that favors the use of the ECG is the flexibility of allowing 

different configurations of the number of electrodes, which allows its use in different 

scenarios. 

The most widely used ECG configuration is the so-called 12-lead system. This system uses 

10 electrodes positioned to generate 12 leads (or derivations) that correspond to different 

points of view (or angles) of myocardial activity. According to Jarvis (2021), considering the 

12 leads in an ECG exam is the most common practice in clinics and hospitals, and has been 

considered for several years as the gold standard for detecting cardiac arrhythmias. Meek and 

Morris (2002) highlight that the 10-electrode configuration provides the advantage of 

providing a more complete and detailed view of myocardial activity. However, there are 

situations in which it may be more interesting to use only a subset of the leads to reduce the 

amount of data processed to optimize diagnostic time and reduce the complexity of the 

procedure. Cardiac monitoring by wearable devices is an example of a scenario in which only 

one lead or a subset of leads is used due to the processing and storage capacity limitations of 

these devices. In addition, emergency or rapid triage situations may also benefit from using a 

subset of leads, as this can expedite patient care. 

Identifying which leads provide the best accuracy in classifying certain arrhythmias is 

essential in scenarios where a subset of leads must be selected for use. Knowing which leads 

are most relevant for diagnosing each type of arrhythmia can contribute to faster and more 

accurate diagnoses. This study presents a comparative analysis between the 12 leads for 

classifying arrhythmias using a Deep Learning model and a large dataset containing 

diagnoses of 32 types of arrhythmias. This study aims to present insights and patterns to 
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optimize the use of ECG in conjunction with Deep Learning techniques for classifying 

arrhythmias. 

2. Literature Review 

The cardiac cycle is made up of the set of events that occur within the heart's valves and 

chambers between the beginning of one heartbeat and the next. These events pump oxygen-

poor blood to the lungs for oxygenation and oxygenated blood to the aorta for distribution 

throughout the body. The cycle is executed through synchronized myocardial contractions 

and relaxations, ensuring proper blood flow throughout the cardiovascular system. This 

process is regulated by specialized cells that generate electrical signals propagated across the 

myocardium to control these movements. 

Disruptions in the regular sequence of these events, known as cardiac arrhythmias, often 

result from diseases or disorders of the cardiovascular system. According to Kingma et al. 

(2003), arrhythmias may stem from structural abnormalities in the myocardium or risk factors 

related to genetic or environmental conditions. Arrhythmias are classified by heart rhythm 

speed (tachycardia or bradycardia) and origin (upper or lower heart chambers). Chakrabarti 

and Stuart (2005) highlight that they can result from abnormalities in signal generation or 

conduction within the myocardium. 

The ECG is the primary diagnostic tool for identifying and classifying cardiac arrhythmias. 

The ECG visualizes myocardial electrical activity as a trace, where the vertical axis 

represents voltage (in microvolts) and the horizontal axis represents time (in milliseconds). 

Figure 1 illustrates an ECG trace showing the 12 leads generated by the 10 electrodes of the 

12-lead system. According to Becker (2006), the trace exhibits a regular sequence of waves in 

healthy hearts, while arrhythmic hearts show irregular intervals, extra waves, altered wave 

morphology, or wave absence. 

 
Figure 1. Example of an ECG exam 

According to Javis (2021), a lead represents the electrical potential difference between two 

points measured using body-attached electrodes. The 12-lead system includes precordial 

leads (V1 to V6), derived from chest electrodes, and limb leads (I, II, III, aVR, aVL, and 

aVF), derived from limb electrodes. Figure 2 shows the positioning of electrodes for 

generating precordial leads and figure 3 shows the positioning of electrodes for generating 

limb leads. Precordial leads provide a transverse perspective of the heart's activity, while limb 

leads offer a frontal view. Together, they enable a three-dimensional analysis of myocardial 

function. Meek and Morris (2002) describe four key anatomical perspectives provided by this 

arrangement: the inferior surface (leads II, III, and aVF), the anterior surface (leads V1 to 

V4), the lateral surface (leads I, aVL, V5, and V6), and the right atrium and left ventricular 
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cavity (leads V1 and aVR). Figure 4 shows the heart's activity visualized from the vertical 

plane (frontal perspective) through the limb leads and the horizontal plane (transverse 

perspective) through the precordial leads. 

 

Figure 2. Precordial leads placement 

 

Figure 3. Limb leads placement 

 

Figure 4. The perspective of the leads 

According to Hibbitt (2024), the 12-lead system has the advantage of being highly 

informative because it allows multiple views of cardiac activity, but is typically confined to 
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clinical settings due to the complexity of the operation and the number of electrodes required. 

Wearable ECG devices have emerged as a promising alternative, extending cardiac 

monitoring beyond healthcare environments and enabling early diagnosis. However, these 

devices often rely on a single lead or a reduced set due to technical constraints. Choi et al. 

(2024) and Funston et al. (2022) highlight that studies evaluating the accuracy of a single lead 

for cardiac diagnoses have been carried out to verify the potential of using wearable devices 

as tools to aid in the practice of cardiological monitoring and diagnosis. 

Several studies have proposed adopting AI-based technologies in medical practice in recent 

years. Alowais et al. (2023) highlight several possible applications of AI in tasks such as 

disease diagnosis, selection of treatments, laboratory tests, drug discovery, recommendation 

systems through virtual assistants and chatbots, and mental health support. As stated by the 

authors, AI-based tools have the potential to provide improved accuracy and efficiency in 

medical processes, as well as the optimization of the use of resources, cost reduction, and 

time savings. 

According to Bajwa et al. (2021), despite the advances made in this field, there are still 

several challenges to the widespread adoption of AI-based tools in clinical practice. The 

authors state that there is a need to address issues related to the availability and quality of 

data, aspects associated with ethics and regulations, and difficulty in ensuring security and 

data privacy. Alowais et al. (2023) stated the need to address issues related to bias and lack of 

user expertise to increase users' confidence in the outcomes obtained using these tools. 

3. Methods 

3.1. Dataset Description 

The dataset generated by the work developed by Liu et al. (2022) was used in this study. The 

data were collected in an experiment carried out at Shandong Provincial Hospital (Jinan, 

China) between 2019 and 2020. A total of 25,770 ECG records were generated from 24,666 

individuals who underwent the exams. Liu et al. (2022) highlight that the lack of large-scale 

public ECG datasets and the standardization problems found in existing datasets motivated 

the development of this work. The dataset was made publicly available for use in research 

related to the classification of cardiac arrhythmias. 

An equipment configured according to the 12-lead system with a sampling frequency of 500 

Hz was used to perform the exams. Each individual was monitored for a time interval that 

varied from 10 to 60 seconds. A cardiologist assigned the diagnosis to each exam following 

the standard recommended by the American Heart Association (AHA). Mason et al. (2007) 

highlight that the statement proposed by the AHA suggests a classification with 117 types of 

arrhythmias and has as its main objective the improvement of the accuracy of diagnoses 

through the use of a concise list of standardized terms. The cardiologist considered 44 

classifications among the 117 suggested by the AHA and certain exams received more than 

one diagnosis. Table 1 presents the 44 classifications considered in this experiment. 
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Table 1. Classification of arrhythmias as suggested by the AHA statement. 

Code Description Code Description 

1 Normal ECG 102 Left posterior fascicular block 

21 Sinus tachycardia 104 Left bundle-branch block 

22 Sinus bradycardia 105 Incomplete right bundle-branch block 

23 Sinus arrhythmia 106 Right bundle-branch block 

30 Atrial premature complex(es) 108 Ventricular preexcitation 

31 
Atrial premature complexes, 

nonconduct 
120 Right-axis deviation 

36 Junctional premature complex(es) 121 Left-axis deviation 

37 Junctional escape complex(es) 125 Low voltage 

50 Atrial fibrillation 140 Left atrial enlargement 

51 Atrial flutter 142 Left ventricular 

54 Junctional tachycardia 143 Right ventricular hypertrophy 

60 Ventricular premature complex(es) 145 ST deviation 

80 Short PR interval 146 ST deviation with T-wave change 

81 AV conduction ratio N:D 147 T-wave abnormality 

82 Prolonged PR interval 148 Prolonged QT interval 

83 
Second-degree AV block, Mobitz type 

I  
152 TU fusion 

84 
Second-degree AV block, Mobitz type 

II 
153 

ST-T change due to ventricular 

hypertrophy 

85 2:1 AV block 155 Early repolarization 

86 AV block, varying conduction 160 Anterior MI 

87 AV block, advanced (high-grade) 161 Inferior MI 

88 AV block, complete (third-degree) 165 Anteroseptal MI 

101 Left anterior fascicular block 166 Extensive anterior MI 

The dataset has 12 features that represent the 12 leads obtained by the ECG at a given time. 

Each feature stores the voltage in microvolts (µV) recorded by the set of electrodes that 

generate a given lead. The dataset target stores the code of the type of arrhythmia attributed to 

the diagnosis. Each instance of the dataset represents the 12 views of cardiac activity at a 

given time. The number of samples generated in each exam varied between 5,000 and 30,000 

records, taking into account the sampling frequency used and the duration of each exam. 

3.2. Preprocessing 

For this study, it was chosen to use only the first 10 seconds of each exam for standardization 

reasons. The records were resampled to a sampling frequency of 125 Hz to reduce the data 

processed and the computational resources required to train the model. Thus, each ECG 

record now contains 1,250 samples. Only the first diagnosis attributed to each ECG was 

considered for cases in which the exam received more than one classification. 

No problems with missing or inconsistent data were found in the exploratory data analysis, 

thus eliminating the need to perform specific procedures to deal with these types of problems. 

However, it was necessary to use robust normalization techniques to adjust the data due to the 

presence of outliers and an asymmetry in the data distribution that could affect the training 

performance. 

The dataset was restructured into a "time window" format. The 1,250 samples corresponding 

to each ECG exam were converted to a single record composed of 1,250 features, in which 

each feature stores the voltage captured by a specific lead at a given instant in time. This data 

structuring aligns with the concepts of Cardiology since doctors analyze the existence of 

patterns in electrical waves over time. The dataset now contains 25,770 samples (quantity of 

ECG exams performed). 
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Table 2 shows the distribution of classes in the dataset. The data were considerably 

unbalanced, as 53% of the samples belonged to the AHA code 1, while there were certain 

classes with less than 1% of the samples. The training set was balanced using upsampling and 

downsampling techniques. The Synthetic Minority Over-sampling (SMOTE) technique was 

used to upsample the data. This technique consists of generating synthetic samples from the 

samples existing in the minority class to balance the dataset. It was necessary to remove the 

classifications that had less than 6 samples (AHA codes 31, 37, 84, 87, 102, 143, 148, and 

152) because the SMOTE technique requires a minimum number of samples in each class to 

generate synthetic samples. The training set now contains 200,000 samples distributed among 

32 classes. The test set remained with 2,577 samples (10%). 

Table 2. Dataset balance analysis 

AHA Code Quantity % 
AHA 

Code 
Quantity  % 

   1 13905 53.96   165 64 0.25 

  22 2659 10.32  104 62 0.24 

 147 1334 5.18   36 44 0.17 

  23 1123 4.36  160 35 0.14 

 145 1045 4.06  155 28 0.11 

 105 917 3.56  108 22 0.09 

  60 786 3.05   88 20 0.08 

  21 723 2.81   54 12 0.05 

  50 663 2.57   80 9 0.03 

 146 540 2.10   83 8 0.03 

 106 473 1.84  140 7 0.03 

  30 384 1.49  166 7 0.03 

 125 201 0.78  102 5 0.02 

 120 122 0.47   31 4 0.02 

 121 111 0.43  148 4 0.02 

  82 98 0.38   87 3 0.01 

 142 96 0.37  152 3 0.01 

  51 94 0.36   37 2 0.01 

 101 77 0.30   84 2 0.01 

 161 77 0.30  143 1 0.00 

3.3. Model Training 

This study is based on the work presented by Dos Santos (2024). That study proposed the use 

of a Convolutional Neural Network (CNN) to detect cardiac arrhythmias using the same 

dataset, however, using only data from the feature corresponding to Lead II. Lead II was 

selected for that work because it is considered the most used lead due to its location being 

close to the cardiac axis and providing better alignment with the direction of transmission of 

electrical signals through the myocardium. The choice to use a CNN model stems from its 

recent success in time series analysis by outperforming other types of Deep Learning models. 

The proposed CNN model proved to be a high-precision tool for detecting cardiac 

arrhythmias by achieving a high accuracy in its predictions. A similar CNN model was used 

in this study. 

Figure 5 shows a representation of the CNN model architecture. The feature extraction block 

is composed of 4 convolutional layers and 2 Max Pooling layers, while the pattern detection 

block is composed of 1 Flatten layer, 1 Fully Connected layer, and 1 output layer. The 

convolutional layers and Fully Connected layers are followed by Batch Normalization layers. 
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The use of 4 convolutional layers provided better performance than other configurations with 

3 layers that were also tested. Batch Normalization layers were used to avoid the gradient 

vanishing problem and make training more stable. 

Table 3 shows the configuration of the model's hyperparameters. The Rectified Linear 

Activation Unit (ReLU) activation function was used because it presents simplicity of 

execution and computational efficiency when compared to other popular activation functions. 

The "he_normal" initializer was used because it gives better results in layers that use the 

ReLU function due to its adaptation to the characteristics of ReLU to improve the efficiency 

of gradient flow through the network. 

The CNN model was developed with the Tensorflow/Keras library. The training was run 12 

times and each run only used data from one of the 12 leads. The training was performed in 

300 epochs and used the Adam optimizer configured with a learning rate of 0.001. The 

standard batch size of 32 was used to strike a balance between performance and consumption 

of computational resources. The training was performed using the cross-validation technique 

(10 folds). 

 

Figure 5. Representation of CNN architecture. 

Table 3. Hyperparameters setup. 
Layer Layer type Filters Kernel size Activation Kernel initializer Units 

1 Conv1D 8 3  ReLU he_uniform - 

2 BachNormalization - - - - - 

3 Conv1D 8 3   ReLU he_uniform - 

4 BachNormalization - - - - - 

5 MaxPooling1D - -  - - - 

6 Conv1D 16 5  ReLU he_uniform - 

7 BachNormalization - - - - - 

8 Conv1D 16 5   ReLU he_uniform - 

9 BachNormalization - - - - - 

10 MaxPooling1D - -   - - - 

11 Flatten - -  - - - 

12 Dense - -  ReLU he_uniform 128 

13 BachNormalization - - - - - 

14 Dense - -  Softmax - 32 

4. Results and Discussion 

This section presents the results obtained from the training of the CNN model using the 12 

ECG leads and discusses their implications for arrhythmia detection and clinical practice. 

Table 4 presents the accuracies obtained across the 12 training runs, highlighting the superior 

performance of aVR. The best accuracies were obtained using leads aVR and II, respectively. 

These results suggest that the anatomical positioning of these two leads in relation to 

myocardial electrical currents favors their sensitivity for identifying cardiac cycle waves and 

enables the detection of different types of arrhythmias. The accuracy obtained using the lead 
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V6 was lower than that obtained using the other leads. This result suggests that the extreme 

lateral positioning of this lead limits its sensitivity for capturing cardiac cycle waves and 

makes it difficult to detect types of arrhythmias originating in locations distant from the left 

chambers of the myocardium. 

Table 4. Model accuracy 

Lead % 

aVR 92.09 

Lead II 91.91 

Lead I 90.43 

V1 90.23 

V3 90.03 

V4 89.98 

aVF 89.19 

V5 88.38 

Lead III 87.40 

aVL 85.80 

V2 85.70 

V6 84.49 

Table 5 presents detailed training metrics. The best F1-Score rate obtained for each type of 

arrhythmia among the 12 training runs is presented and which were the leads with which it 

was possible to achieve the best rate. The F1-Score metric was used because it is a robust 

metric and provides a more balanced view of model performance. 

Table 5. Detailed metrics 

Condition F1-Score Leads 

Normal ECG 0.95 Lead II, aVR 

Sinus tachycardia 0.96 aVR 

Sinus bradycardia 0.96 Lead I, Lead II, aVR, V1, V3 

Sinus arrhythmia 0.84 Lead II 

Atrial premature complex(es) 0.85 Lead II, V1, V3 

Junctional premature complex(es) 0.90 V3 

Atrial fibrillation 0.91 Lead II, V1 

Atrial flutter 0.92 Lead II, V3 

Junctional tachycardia 0.87 Lead I, Lead II, V1, V5 

Ventricular premature complex(es) 0.89 aVR 

Short PR interval 0.94 V3 

Prolonged PR interval 0.88 Lead II, aVR 

Second-degree AV block, Mobitz 

type I 

0.88 V5 

AV block, complete (third-degree) 0.95 V3 

Left anterior fascicular block 0.91 Lead II 

Left bundle-branch block 0.93 Lead I 

Incomplete right bundle-branch 

block 

0.84 Lead I, aVR, V1 

Right bundle-branch block 0.96 V1 

Ventricular preexcitation 0.91 V4 

Right-axis deviation 0.90 V3 

Left-axis deviation 0.88 Lead II, aVF 

Low voltage 0.87 V3 

Left atrial enlargement 1.00 Lead II 

Left ventricular 0.87 Lead II, aVR 

ST deviation 0.85 aVR 

ST deviation with T-wave change 0.86 Lead II 

T-wave abnormality 0.86 Lead II 

Early repolarization 0.94 Lead II 

Anterior MI 0.97 V3 
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Inferior MI 0.90 V4 

Anteroseptal MI 0.93 V3 

Extensive anterior MI 0.92 aVR, V3 

Considering individual results; leads II, V3, and aVR were the best leads for identifying most 

types of arrhythmia, which suggests that these leads provide a comprehensive view of the 

heart's electrical activity and enable the detection of arrhythmias originating from different 

locations in the myocardium. Leads III, aVL, V2, and V6 were not the best for any type of 

arrhythmia, suggesting that these leads have limitations in their sensitivity and are more 

indicated for identifying specific types of arrhythmias. 

The superiority presented by lead II in the experiment is aligned with the belief highlighted 

by Meek and Morris (2002) that the characteristics of lead II make it very accurate and 

reliable for identifying different types of arrhythmias, and this factor makes it the most used 

lead in clinical practice. However, the good performance achieved by other leads 

demonstrates that there are alternatives for different ECG configurations with the possibility 

of obtaining high precision in arrhythmia detection. 

The aVR lead achieved the best performance for identifying the normal condition (without 

arrhythmia). This result reinforces the thesis that the anatomical positioning of this lead 

facilitates the capture of subtle deviations in the electrical axis that would indicate abnormal 

conditions and this characteristic can simplify the detection of normal conditions. The 

performance of this lead, which is often undervalued in clinical practice, demonstrated that it 

can play an important role in detecting normal conditions and different types of arrhythmias. 

The results also suggest patterns related to groups of disorders that share electrocardiographic 

characteristics or location of origin. Changes in sinus rhythm were better identified by limb 

leads. Supraventricular changes originating in the atrioventricular node were better detected 

by most leads, as well as conduction disturbances resulting from blockages and anatomical 

changes, such as deviations in the cardiac axis or enlargement of the chambers. Leads II and 

aVR showed the highest precision for detecting changes in the ST segment and T wave. The 

myocardial infarctions were better detected by precordial leads. Finally, atrial fibrillation, one 

of the most prevalent cardiac arrhythmias, was most accurately identified by leads II and V1. 

The identified patterns could be useful for developing ECG applications in wearable devices, 

in which subsets of the 12-lead system must be used due to the limitations of these devices. 

Quantitative data on the performance of each lead is useful to support decisions about which 

leads to use in a given context. These alternatives contribute to the expansion of healthcare 

services by helping to reduce limitations associated with cardiac monitoring processes. 

Wearable devices equipped with ECGs and highly accurate AI-based systems for diagnosing 

arrhythmias enable patients to be monitored at different times of the day. This characteristic is 

desirable because the symptoms of this disease can manifest themselves intermittently and 

doctors may be unable to make a diagnosis when the patient is outside clinics or hospitals. In 

this way, possible abnormalities detected by the system can be recorded for later analysis or 

transmitted in real-time to the responsible doctor. Such systems can also send alerts if a 

specific patient is affected by some arrhythmia considered more critical, which can be useful 

for patients who need the help of other people because they have some limitation or disability 

that prevents them from taking the necessary actions on their own. 

5. Limitations and Future Direction 

The dataset used in the study is comprehensive and well annotated, however, it was derived 

from an experiment carried out under specific conditions such as geographic location, 
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population studied, and ECG equipment used. These factors could introduce biases or 

limitations in generalizing the results for different populations or scenarios. As a future study, 

it is suggested to replicate this work using other datasets collected in distinct scenarios to 

verify that the results obtained are robust and generalizable. It is recommended to use 

datasets collected in experiments involving patients with different profiles and using distinct 

data acquisition protocols. 

Using AI-based systems in environments outside clinics and hospitals presents significant 

challenges due to the possibility of having a wide variety of data different from those used in 

training and the quality of the data being affected by noise. There may also be restrictions 

related to regulatory issues, as in uncontrolled environments there could be difficulties in 

ensuring that data is being collected following the protocols required for the exams. Future 

studies addressing these issues and proposing alternatives to mitigate such problems could 

contribute significantly to the field. 

6. Conclusion 

The results obtained demonstrate the feasibility of using individual leads or subsets of the 12-

lead system for the detection of arrhythmias with the possibility of obtaining high accuracy in 

predictions generated by Deep Learning models. These findings suggest significant 

opportunities for optimizing ECG use, which can also reduce costs associated with the 

cardiac monitoring process. The results may also reinforce confidence in AI-based 

technologies as tools to support cardiology practice and encourage the development of ECG 

applications for use in environments outside of clinics and laboratories. 

The patterns identified in the analysis of detailed metrics can provide useful information for 

healthcare professionals. This knowledge can improve the efficiency of exams, reduce the 

time required for diagnosis, and enhance the overall quality of medical processes. The 

quantitative data provided prevent decisions from being based solely on hypotheses, offering 

a robust foundation for clinical practice. 
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