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 In this article, we develop a new algebraic public key cryptosystem, 

which is based on generally non-commutative ring. Firstly, we define 
the polynomials over the non-commutative rings and then take it as 

underlying work structure. The hard problem of the scheme is the 

mixture of matrix discrete log problem under modular classes and 
polynomial symmetric decomposition problem. Using matrices of 

higher order and large modular classes resist the brute force and other 

well-known attacks exists in the literature. We also discuss the 
computational complexity of proposed scheme. On the other hand, 

we propose a signature scheme over a non-commutative division 

semiring. The key idea behind the signature scheme is that, for a 

given non-commutative division semiring, we build a polynomial 
and then implement digital signatures on multiplicative structure of 

semiring. 

1. Introduction 

Cryptography is very important need of today’s world. Cryptography is a discipline of 

computer science in which the algorithms and security practices plays a central tool. But its 

foundation traditionally depends upon mathematics.  

The first provoked though about the public key cryptography (PKC) was given by Diffie and 

Hellman (Diffie & Hellman, 1976). After that, many public key algorithms were proposed like 

RSA (Rivest et al., 1978), E 

lGamal cryptosystem (ElGamal, 1985), elliptic curve cryptography (ECC) (Menezes, 1993) 

and the discrete logarithm problem (DLP) (Shor, 1997) and these schemes were considered to 

be secured.  All the said schemes, systems and methods use some number theoretical and pure 

algebraic structures. Especially, we can say that RSA generally depends upon the structure of 

finite commutative groups and it works on invertible elements (units) of n  such that 21 ppn =

; where 1p and 2p are randomly large prime numbers. However, the hard problem is to find these 

primes 1p  and 2p , because it depends on the factorization problem known as Integer 

Factorization Problem (IFP). But Peter Shor (Shor, 1995) proposed a quantum algorithm which 

can solve both IFP and DLP. In 2002, Stinson (Stinson, 2002) notice that mostly proposed 

PKC’s eternally belongs to commutative group only whose security can be compromised by 

Shor’s algorithm. Hence Lee and Goldreich advised that we do not put all the cryptographic 

protocols in one group. This is the reason to introduce a new field of cryptography known as 

non-commutative cryptography by (Lee, 2004).  Then afterwards for various problems, key 

exchange protocols, encryption-decryption algorithms, authentication schemes were developed 

on non-commutative cryptosystem. 

In the beginning, the generalization of the protocols for non-commutative cryptography was 

based on braid group. (Magyarik and Wagner, 1985) proposed a public key cryptography by 
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using the elements of semigroup with undecidable word problem. But Birget et al. (Birget et 

al., 2006) told that the PKC proposed by Magyarik and Wagner actually did not depends on 

word problem and as a result they developed a new scheme which was based on finitely 

generated groups with hard problem. On braid group based cryptography, Anshel et al. (Anshel 

et al., 1999) proposed a key exchange protocol and the hard problem of this protocol was the 

difficulty of resolving equations over algebraic structures. In this research article, they 

mentioned that for PKC braid groups as a platform are a good choice. After this in 2000, Ko 

Lee et al. (Ko et al., 2000) developed a new key exchange protocol by using braid groups. The 

conjugacy search problem (CSP) is the underlying hard problem for this protocol. Furthermore, 

many successful schemes were proposed in this area by (Cha et al., 2001), (Anshel et al., 2003), 

(Dehornoy, 2004) and (Anshel et al., 2006). A review of group based cryptographic methods 

was discussed by Myasnokov et al. (Myasnikov et al., 2007) in the book “Group-based 

Cryptography”.  A new proposal is given by Cao et al. (Cao et al., 2007) on polynomials over 

non-commutative semi groups or rings. In 2016, S. Inam and R. Ali (Inam and Ali, 2016) 

developed a cryptosystem for which the underlying work structure is groupring and the hard 

problem is CSP. Another scheme is also formulated by S. Kanwal and R. Ali (Kanwal and Ali, 

2016) by using non-commutative platform groups.  

In this article, our contribution is in multidisciplinary scenario on polynomials over non-

commutative rings on the cryptographic protocol regarding authentication, key exchange and 

encryption decryption algorithm. The rest of the article is organised as follows:  

Section 2 is related with the basic definitions and cryptographic hard problems. In section 3, 

we propose digital signature and also give example to illustrate the given scheme. In section 4, 

we develop a new public key cryptosystem in which the polynomials over matrix ring is chosen 

as a platform. Section 5 deals with the security of proposed cryptosystem. In the last, section 6 

discusses the conclusion of the proposed cryptosystem.  

 

2. Preliminaries 

In this section, we discuss some important definitions as well as the cryptographic hard 

problems which will be helpful in the next sections. 

There are many cryptographic constructions for which we need functions which are easy to 

calculate but hard to invert, and one of the very well-known example is hash function. These 

functions are used as an application in digital signatures.  

Definition 1 (Hash Function) 

Hash function takes a message as an input and produce a hash code or hash value as an output. 

In simple words, we can say that applying hash on set of arbitrary finite length produce output 

of fixed length. The three secured desirable properties of hash function are as follows: 

i. Given any hash output h , it is computationally infeasible to find an input message x , 

such that ( ) hxH = . This property is known as one way-ness. 

ii. It is compulsory that the hash of the two different messages do no give the same answer 

in digital signature. This means that, to find yx  with ( ) ( )yHxH =  is 

computationally infeasible. This property is known as weak collision resistance. 

iii. To find a pair ),( yx from ( ) ( )yHxH = is computationally infeasible. This property is 

known as strong collision resistance. 

Hash functions are used as an application of cryptography which we call “data integrity”. 

Definition 2 (Matrix Discrete Logarithm Problem (MDLP)) 

For any group of matrices M , let ( )
qFMBA , . To find an integer d from the equation 

(1) BAd = ,   

 

is known as matrix discrete logarithm problem. 
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Definition 3 (Decomposition Problem (DP)) 

Let us consider a non-commutative group G and GH  . Let Ggg 21, . To find the elements 

Hhh 21, from the relation  

(2) 2211 hghg = , 

 

is known as decomposition problem. 

Definition 4 (Symmetric Decomposition Problem (SDP)) 

Let us consider a non-commutative groupG . Let Ggg 21,  and ba, . To find the element 

Gg 3 from the relation  

(3) 
ba gggg 3231 = ,  

 

is known as symmetric decomposition problem. 

Definition 5 (Polynomial Symmetrical Decomposition Problem (PSDP)) 

Let R be a non-commutative ring. For any element Rr , consider the set RSr  defined as 

  xxPrPSr 0)(|)( = , 

and ba, . Given two elements Rgg 21, , finding the element rSh , where 

(4) ba hghg 12 = ,  

is known as polynomial symmetric decomposition problem. 

 

3. Proposed Digital Signature Scheme 

The digital signature scheme involves the main following steps: 

3.1. Initialization 

Let N be the product of two randomly large primes qandp , such that .pqN =  Let ( )NnM   

be matrix ring and let ( )NnMBA , . Choose  xxaxaxaaxf
n

n 0

2

2

1

10
1

1
...)( ++++= , 

be a positive integral coefficient polynomial. Calculate NAfP mod)(1 = and 

NBfQ mod)(1 = .  

3.2. Key Generation 

Suppose Alice wants to communicate with Bob, then she signs and send message M to Bob for 

verification. She chooses  xxg 0)(  , calculates 0)( 11 = Npg  and 

( ) NNQNY
mm

mod21

111= . Now Alice’s private key is 1N and her public key is the triplets as

( ) )(,, 11 NnMYQP  , where 1m and 2m are the integers. 

3.3. Signature Generation 

Alice performs the following steps to do the digital signatures: 

i. Alice chooses a random polynomial  xxcxcxccxh
n

n 0

2

2

1

10
3

3
...)( ++++=  and 

calculates ).( 12 PhN =  

ii. For a message M , she computes hash of a message )(MH and also calculates the 

following quantities as: 

( )  ( ) ( ) NNNNNMHNNNQN
mmmmmm

mod,mod)(,mod 212121

2211212  ===  

( ) ( ) ( ) NNMHNNNMHNNNN
mmmmmm

mod)(,mod)(,mod 212121

222112 ===  . 

iii. Hence Alice’s signature on M is ( ) ,,,,  and she sends it to Bob for verification and 

then accept it. 
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3.4. Verification 

After receiving the signatures from Alice ( ) ,,,, , Bob will perform the following steps: 

First, he computes ( ) NYV mod1 −= . He will accepts signatures if and only if  

(5) ( ) ( ) NVN modmod 11 −− =  . 

Otherwise, he rejects the signatures. 

Remark: If there does not exist multiplicative inverse in )(MH , then verification has the form 

as ( ) NVN modmod1 =− . 

Theorem:  

If Bob verifies the signature scheme, then he always accepts ( ) ,,,,  as a valid signature. 

 

Proof: (Correctness) 

Bob computes ( ) ( ) ( ) NNMHNNQNN
mmmm

mod)(mod 2121

22

1

212

1 −− = , 

                                                ( ) NNMHQN
mm

mod)( 21

2

1

12

−−
= , 

                                                ( ) NY mod11  −−= , 

                                                ( ) NV mod1−=  . 

Example 

Here we will illustrate our signature scheme with the help of toy example. Let us consider two 

randomly primes 17=p and 11=q , then 187=N . Let  

( ) ( )18721872
89169

11685

101121

10211









=








= MBandMA , 

 xxxxxf 0

23 6543)( +++= . 

Then we can find the following as: 

.187mod
941

89122
)(187mod

155110

11950
)( 11 








==








== BfQandAfP  

 

For the key generation, Alice’s chooses a polynomial )(xg different from )(xf as 

 xxxxg 0

2 654)( ++=  and two integers 3,2 21 == mm . She calculates her private key 

( ) 187mod
1555

0158
11 








== PgN and 187mod

4219

87111
mod)( 3

11

2

1 







== NNQNY . 

Hence Alice’s public key is ( ) ( ).,, 187211 MYQP  

For signature generation, first of all we have to introduce the hash function for a message M . 

For any 22  matrix 







=

2221

1211

aa

aa
K , hash is defined as ( ) 








=

2221

1211

22

22
aa

aa

KH  .  

If we choose a message 







=

5681

85
M , then 187mod

862

13543
)( 








=MH . 

Next, she chooses different polynomial  xxxxh 0

3 15)( ++= to find

187mod
1955

17148
)( 12 








== PhN , ( ) 187mod

125156

17144
mod3

21

2

2 







== NNQN ,  
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 ( ) ,187mod
13684

18250
mod)( 3

1

2

1 







== NNMHN   

( ) ,187mod
74109

12234
mod3

2

2

2 







== NNNS   

 ( ) ,187mod
115171

99159
mod3

1

2

2 







== NNN   

( ) ,187mod
12373

417
mod)( 3

2

2

1 







== NNMHN

( ) 187mod
162116

38150
mod)( 3

2

2

2 







== NNMHN . 

Hence Alice sends all the above calculated quantities as a signature to Bob. For verification, 

Bob will go with the following steps: 

He calculates ( ) 187mod
10164

566
mod1









== − NYV  , ( ) 187mod

98124

2874
mod1









=− N  

and ( ) .187mod
98124

2874
mod1









=− NV  

So we can easily see that the Bob verifies the signature and finally he accepts it. 

 

4. Proposed Cryptosystem 

Let us consider randomly two large primes p and q such that pqN = , a ring matrix ( )NnM  . 

Let  xxaxaxaaxf n

n 0

2

2

1

10 ...)( ++++=  be a positive integral coefficient polynomial. 

Now choose a matrix ( )NnMA  and compute the base matrix NAfB mod)(= . 

4.1. Key Generation 

i. Bob chooses a secret random integer 1d  in the interval  1,1 −n . 

ii. Next, he calculates NBQ
d

mod1

1 = . Make 1Q public and 1d secret. 

iii. So, the private key is ( )( )1,dAf and public key is ( )BQ ,1 . 

4.2. Encryption 

Let Alice wants to communicate with Bob, then she sends a message M as follows: 

i. She chooses a random integer  1,12 − nd and computes NBK
d

mod2= . 

ii. She calculates .mod2

11 NQK
d

=  

iii. Finally, she transmits the ciphertext pair ( )KC, , where C is defined as  

( ) .mod* 1 NKMC =  

 

4.3. Decryption 

On receiving the ciphertext from Alice, Bob decrypts the message as follows: 

First, he computes ( ) NKK
d

mod1

2 = . Finally he calculates to get the original plaintext back. 

( ) ,mod* 1

2 NKCM −=  

 

Example: 



 European Journal of Engineering Science and Technology, 3 (1): 22-30, 2020 

 

27 

Let us give an example which helps us to explain our proposed cryptosystem. For this consider 

two randomly large primes 29=p and 11=q such that 319=N , a polynomial 

 xxxxxf 0

23 9743)( +++=  and a matrix ( )3193

129300

6288203

6645112



















= MA . 

Hence the base matrix is 319mod

20463230

2578715

9221440

)(

















== AfB .  

For key generation, Bob chooses 3192,167 11 = dd and find 

319mod

2114214

230111286

131216131

319mod

20463230

2578715

9221440
167

1

















=

















=Q . 

For encryption, Alice randomly picks 3192,216 12 = dd and calculates 

319mod

223044

128291160

21024784

319mod

20463230

2578715

9221440
216

















=

















=K , 

319mod

18522077

30477303

21021424

319mod

2114214

230111286

131216131
216

1

















=

















=K . 

Now Alice wants to communicate with Bob, so she presents a message M as  

( )3193

398311

14586123

8723156



















= MM . 

  

( ) 319mod

18522077

30477303

21021424

*

398311

14586123

8723156

mod* 1

































== NKMC , 

319mod

27611166

687300

146104200

















=C . 

Then she transmits the ciphertext ( )KC,  to Bob. 

When Bob receives the pair of ciphertext pair, he will first find  

( ) 319mod

223044

128291160

21024784

mod

167

2
1

















== NKK
d

, 

319mod

18522077

30477303

21021424

2

















=K . 
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Finally he gets original plaintext message after calculating 

( ) 319mod

18522077

30477303

21021424

*

27611166

687300

146104200

mod*

1

1

2

−

−

































=NKC , 

                                                ( ) 319mod

398311

14586123

8723156

mod* 1

2

















=− NKC , 

                                                                           M=  
 

5. The computational Complexity of proposed cryptosystem 

The computationally complexity of discrete logarithm problem computing is compared with 

the matrix discrete logarithm problem for encryption and decryption is as follows: 

• Discrete Logarithm Problem: 

i. Let us consider the size of input plaintext message units be 1n . 

ii. The computing complexity of pk mod = is: 

( )1log)()( nOTT k ==  , 

arithmetic (multiplication) operation, using Fast Exponentiation Algorithm [ ] . Then 

( )1

3log)( nOT k = - bit operations. 

• Matrix Discrete Logarithm Problem: 

i. Let us consider the size of input plaintext message units be 1n  and the size of base 

matrix be 2n . 

ii. The computing complexity of NAA
k

mod21 = is: 

( )121 log)()( nOATAT k == , 

using Repeated-Square and Multiplication Algorithm, then 

 

( )1

2

22 log)( nnOAT k = , multiplication operation, 

( )1

32

22 log)( nnOAT k = -bit operations. 

 

6. Security Analysis 

First we will talk about the security analysis of signature scheme. For this, let us consider that 

an active attacker can obtain, remove, alter/forge and retransmit the message which Alice sends 

to Bob. Let us denote that altered/forged data by fD .Here we discuss three main attacks on 

signature scheme that is data altering/forgering on signatures, signature repudiation on valid 

data. 

Let us assume that an attacker replaces the original plaintext message M by forged message

fM . He tries to satisfy the Equation (refer with: Eq. 5) which is impossible because message 

is only involved in the signature generation not in the verification scheme. Hence Equation 

(refer with: Eq. 5) only true for original plaintext massage. Without extracting signatures, data 

forgery is not possible. The next attempt is to try to find fM  for )(MH . As we assume that 

hash is cryptographically secure, so by using fM for hash is also impossible. Hence it is 

concluded that a forged data can’t be signed with valid signature. 

Now Alice’s strategy is to refuse the recognition of signatures on the valid data. So the valid 

signature ( ) ,,,,  can be forged by the cryptanalyst and she can sign a plaintext message 



 European Journal of Engineering Science and Technology, 3 (1): 22-30, 2020 

 

29 

M with the forged signature as ( )
fffff  ,,,,  and then the verification procedure is as 

follows: 

( ) NYV ff mod1 −= , 

    ( ) ( ) ( ) NNMHNNQNNN
f

mmmm

f

mm
mod)( 212121

21

1

11112

−
=  , 

    ( ) ( )( ) NNMHNNQNNN
f

mmmm

f

mm
mod)( 211221

211

1

1112

−−−
=  . 

 

Since ( ) ( ) INN
m

f

m


− 22

11 and also ( ) ( ) INN
m

f

m


− 11

11 , where I is the identity matrix in the 

multiplcative division semiring. Hence we conclude that ( ) ( ) NVN ff modmod 11 −−   . 

Hence, this ensures us non-repudiation in our proposed signature scheme. 

Here we note that the proposed signature scheme is constructed on the non-commutative 

division semiring which is based on the polynomial symmetric decomposition problem. We 

believe that PSDP is intractable on non-commutative division semiring. Without proper 

knowledge of private keys the construction of new signature scheme is impossible. As a result, 

cryptanalyst is not able to compute forged signature.  

The security of the proposed cryptosystem depends upon the different factors like the number

N , the choice of the polynomial, the order of the matrices and matrix discrete logarithm 

problem. 

Matrix cryptography depends upon the difficulty of solving MDLP, and it gives us the equal 

security for a far smallest bit size. Matrix multiplication is complicated and time consuming, 

hence the complexity increases with the choice of matrices of higher order. The intractability 

and complexity is increased with the choice of the polynomial and size of base matrix. To find 

the inverses in large modulo N becomes more difficult.  

 

7. Conclusion  

This manuscript is basically divided into two main parts. In the first part (Section 3), we 

propose the digital signatures and also verify its correctness. The key idea is that, we choose a 

random polynomial and for any ( )NnMA  , we have .1N  A cryptanalyst has no way to 

identify a polynomial ( )  xxg 0 such that 01 N , even he has infinite computation power. 

Hence there is a negligible probability to trace the exact private key because the scheme is 

based on intractability of PSDP. The proposed signature scheme is sound.    

On the other hand, in the next part (Section 4) we develop a novel public key cryptosystem 

based on polynomials over non-commutative rings with detailed example. In matrix 

cryptography, the computational advantages are the use of the shortest key length which 

reduces all the calculation with secure systems. The MDLP is more complicated than DLP and 

ECDLP, because if the matrix size is increased, the complexity of matrix operations also 

increased.  Hence we can say that our proposed scheme gives us good measures of safety. 
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