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ARTICLE INFO ABSTRACT

Keywords: In this article, we develop a new algebraic public key cryptosystem,
Hash Function which is based on generally non-commutative ring. Firstly, we define
Signature Scheme the polynomials over the non-commutative rings and then take it as
Key Exchange Protocol underlying work structure. The hard problem of the scheme is the
Complexity mixture of matrix discrete log problem under modular classes and

polynomial symmetric decomposition problem. Using matrices of
higher order and large modular classes resist the brute force and other
well-known attacks exists in the literature. We also discuss the
computational complexity of proposed scheme. On the other hand,
we propose a signature scheme over a non-commutative division
semiring. The key idea behind the signature scheme is that, for a
given non-commutative division semiring, we build a polynomial
and then implement digital signatures on multiplicative structure of
semiring.

1. Introduction

Cryptography is very important need of today’s world. Cryptography is a discipline of
computer science in which the algorithms and security practices plays a central tool. But its
foundation traditionally depends upon mathematics.

The first provoked though about the public key cryptography (PKC) was given by Diffie and
Hellman (Diffie & Hellman, 1976). After that, many public key algorithms were proposed like
RSA (Rivest et al., 1978), E

IGamal cryptosystem (ElGamal, 1985), elliptic curve cryptography (ECC) (Menezes, 1993)
and the discrete logarithm problem (DLP) (Shor, 1997) and these schemes were considered to
be secured. All the said schemes, systems and methods use some number theoretical and pure
algebraic structures. Especially, we can say that RSA generally depends upon the structure of

finite commutative groups and it works on invertible elements (units) of Z, such thatn = p, p,
; where p,and p,are randomly large prime numbers. However, the hard problem is to find these

primes p, and p,, because it depends on the factorization problem known as Integer

Factorization Problem (IFP). But Peter Shor (Shor, 1995) proposed a quantum algorithm which
can solve both IFP and DLP. In 2002, Stinson (Stinson, 2002) notice that mostly proposed
PKC’s eternally belongs to commutative group only whose security can be compromised by
Shor’s algorithm. Hence Lee and Goldreich advised that we do not put all the cryptographic
protocols in one group. This is the reason to introduce a new field of cryptography known as
non-commutative cryptography by (Lee, 2004). Then afterwards for various problems, key
exchange protocols, encryption-decryption algorithms, authentication schemes were developed
on non-commutative cryptosystem.

In the beginning, the generalization of the protocols for non-commutative cryptography was
based on braid group. (Magyarik and Wagner, 1985) proposed a public key cryptography by
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using the elements of semigroup with undecidable word problem. But Birget et al. (Birget et
al., 2006) told that the PKC proposed by Magyarik and Wagner actually did not depends on
word problem and as a result they developed a new scheme which was based on finitely
generated groups with hard problem. On braid group based cryptography, Anshel et al. (Anshel
et al., 1999) proposed a key exchange protocol and the hard problem of this protocol was the
difficulty of resolving equations over algebraic structures. In this research article, they
mentioned that for PKC braid groups as a platform are a good choice. After this in 2000, Ko
Lee et al. (Ko et al., 2000) developed a new key exchange protocol by using braid groups. The
conjugacy search problem (CSP) is the underlying hard problem for this protocol. Furthermore,
many successful schemes were proposed in this area by (Cha et al., 2001), (Anshel et al., 2003),
(Dehornoy, 2004) and (Anshel et al., 2006). A review of group based cryptographic methods
was discussed by Myasnokov et al. (Myasnikov et al., 2007) in the book “Group-based
Cryptography”. A new proposal is given by Cao et al. (Cao et al., 2007) on polynomials over
non-commutative semi groups or rings. In 2016, S. Inam and R. Ali (Inam and Ali, 2016)
developed a cryptosystem for which the underlying work structure is groupring and the hard
problem is CSP. Another scheme is also formulated by S. Kanwal and R. Ali (Kanwal and Ali,
2016) by using non-commutative platform groups.

In this article, our contribution is in multidisciplinary scenario on polynomials over non-
commutative rings on the cryptographic protocol regarding authentication, key exchange and
encryption decryption algorithm. The rest of the article is organised as follows:

Section 2 is related with the basic definitions and cryptographic hard problems. In section 3,
we propose digital signature and also give example to illustrate the given scheme. In section 4,
we develop a new public key cryptosystem in which the polynomials over matrix ring is chosen
as a platform. Section 5 deals with the security of proposed cryptosystem. In the last, section 6
discusses the conclusion of the proposed cryptosystem.

2. Preliminaries

In this section, we discuss some important definitions as well as the cryptographic hard
problems which will be helpful in the next sections.

There are many cryptographic constructions for which we need functions which are easy to
calculate but hard to invert, and one of the very well-known example is hash function. These
functions are used as an application in digital signatures.

Definition 1 (Hash Function)

Hash function takes a message as an input and produce a hash code or hash value as an output.
In simple words, we can say that applying hash on set of arbitrary finite length produce output
of fixed length. The three secured desirable properties of hash function are as follows:

i.  Given any hash outputh, it is computationally infeasible to find an input message X,
such that H( )— h. This property is known as one way-ness.

ii.  Itis compulsory that the hash of the two different messages do no give the same answer
in digital signature. This means that, to find x=ywith H(x)=H(y) is
computationally infeasible. This property is known as weak collision resistance.

iii.  To find a pair (x,y)from H(x)=H(y)is computationally infeasible. This property is
known as strong collision resistance.
Hash functions are used as an application of cryptography which we call “data integrity”.
Definition 2 (Matrix Discrete Logarithm Problem (MDLP))
For any group of matricesM , letA,B € M (F ( ) To find an integer d e Z from the equation

1) A’ =B,

is known as matrix discrete logarithm problem.
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Definition 3 (Decomposition Problem (DP))
Let us consider a non-commutative group GandH < G. Letg,,g, € G. To find the elements

h,,h, € H from the relation
(2) 0, = h1g2h2,

is known as decomposition problem.
Definition 4 (Symmetric Decomposition Problem (SDP))
Let us consider a non-commutative groupG . Letg,,d, € G and a,b € Z. To find the element

g, € G from the relation
3) 9: = 050,05

is known as symmetric decomposition problem.

Definition 5 (Polynomial Symmetrical Decomposition Problem (PSDP))

Let R be a non-commutative ring. For any elementr € R, consider the set S, < Rdefined as
S, ={P(N) | P(x) e Z,,[x]},

anda,b € Z. Given two elements g,,d, € R, finding the elementh € S, , where

4) g, =h%g,h",

is known as polynomial symmetric decomposition problem.

3. Proposed Digital Signature Scheme

The digital signature scheme involves the main following steps:

3.1. Initialization

Let N be the product of two randomly large primes p and g, such that N = pg. Let Mn(ZN)
be matrix ring and letA,B e M, (Z, ). Choose f(x) = a, +a,x" +a,x* +...+a, x" € Z,[x],
be a positive integral coefficient polynomial. Calculate P, = f(A)modN and
Q, = f(B)modN .

3.2. Key Generation

Suppose Alice wants to communicate with Bob, then she signs and send message M to Bob for

verification. She chooses g(x) € Z_,[x], calculates g(p,) = N, = 0 and
Y = (Nl”‘inNlmz )mod N . Now Alice’s private key is N,and her public key is the triplets as
(P,Q,Y)eM, (Z,), where m and m,are the integers.

3.3. Signature Generation
Alice performs the following steps to do the digital S|gnatures

i. Alice chooses a random polynomial h(x)=c,+¢,x' +C,x* +...+¢, X" € Z, .[x] and

calculates N, = h(R,).
ii. For a message M, she computes hash of a message H(M)and also calculates the
following quantities as:
a=(NPQNM JmodN, B=(NM™{H(M)aINM™)modN, 5 =(NIAN2" Jmod N
= (NP AN Jmod N,y = (N™H (M)N/™ )mod N, 7=(NMH(M)N Jmod N .
iii. Hence Alice’s signature on M is (e, 7, ¢,y,77) and she sends it to Bob for verification and
then accept it.
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3.4. Verification
After receiving the signatures from Alice (a, 7,0, 77), Bob will perform the following steps:

First, he computesV = (goY ‘11//)mod N . He will accepts signatures if and only if
(5) (a’ln)mod N = (;flv)mod N.

Otherwise, he rejects the signatures.
Remark: If there does not exist multiplicative inverse in H(M), then verification has the form

as (;/a’ln)mod N=VmodN.
Theorem:
If Bob verifies the signature scheme, then he always accepts (a, Vo, 77) as a valid signature.

Proof: (Correctness)

Bob computes (o7 )mod N = (N-QNJ ) * (N H (M)NZ* Jmod N,
=(N;™Q*H(M)N* )Jmod N,
=y (qu *ll//)mod N,

(v )mod N.

Example
Here we will illustrate our signature scheme with the help of toy example. Let us consider two
randomly primes p=17andq =11, thenN =187. Let
{85 116
B p—ty

121 101
f(x) =3x* +4x* +5x+6 € Z_,[x].
Then we can find the following as:

50 119
P =f(A) :[110 155} mod187 and Q, = f(B) :{

}emz(zm),

122

89
mod187.
41 9

For the key generation, Alice’s chooses a polynomial g(x)different from f(x)as
g(x) = 4x* +5x +6 € Z_,[x] and two integersm, =2, m, = 3. She calculates her private key
158
N, =9(R)=
. =9(R) {55
Hence Alice’s public key is (P,,Q,,Y)e M,(Z,, )
For signature generation, first of all we have to introduce the hash function for a message M .

0 111 87
mod187andY = (N/Q,N;})mod N = mod187 .
15 19 42

. all alz . i 281 D%
For any 2x2 matrixK = , hash is defined as H(K ) = .

a21 a22 2a21 2322
5 8 43 135
If we choose a message M = , thenH(M) = mod187.
81 56 2 86

Next, she chooses different polynomial h(x) = x* +5x +1 ¢ Z_,[x]to find

148 44 171
N, =h(P,) = mod187,
2 1 55

17
mod187,a = (N7Q;N; )Jmod N =
19} a=(N;oN;) [156 125
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B=(N{H(M)aIN? )mod N = E’Z iiﬂ mod187,
S =(N2pN2)modN = [1?; 172ﬂ mod187,

Q= (N22 ﬂl\lf)mod N = Eii 19195} mod187,

w =(N2H(M)N?)mod N = E; 133} mod187,
n=(NZH(M)NZ)mod N =Eig f;ﬂmodls?.

Hence Alice sends all the above calculated quantities as a signature to Bob. For verification,
Bob will go with the following steps:

66 5 74 28
He calculatesV = (@Y ‘i )Jmod N = mod187, & *r)mod N =
(o) {164 10} ") [124 98

}modlS?

74 28
and (7’1V)mod N =
124 98

So we can easily see that the Bob verifies the signature and finally he accepts it.

} mod187.

4. Proposed Cryptosystem
Let us consider randomly two large primes p and g such that N = pq, a ring matrian(ZN )

Let f(x)=a, +ax" +a,x*+..+a,x" € Z_,[x] be a positive integral coefficient polynomial.
Now choose a matrix Ae M n(ZN )and compute the base matrixB = f (A)mod N .

4.1. Key Generation
i. Bob chooses a secret random integer d, in the interval [1,n—1].

ii. Next, he calculatesQ, = B* mod N . Make Q, public and d, secret.
iii. So, the private key is (f(A),d,)and public key is(Q,, B).

4.2. Encryption
Let Alice wants to communicate with Bob, then she sends a message M as follows:

i.  She chooses a random integer d, < [1,n—1]and computes K = B% mod N .
ii.  She calculates K, =Q; mod N.
iii.  Finally, she transmits the ciphertext pair(C, K), where C is defined as
C=(M*K,)modN.

4.3. Decryption

On receiving the ciphertext from Alice, Bob decrypts the message as follows:
First, he computesK, = (K)dl mod N . Finally he calculates to get the original plaintext back.

M = (C*Kz’l)mod N,

Example:

26



European Journal of Engineering Science and Technology, 3 (1): 22-30, 2020

Let us give an example which helps us to explain our proposed cryptosystem. For this consider
two randomly large primesp=29andq=211such thatN =319, a polynomial

112 45 66
f(x) =3x*+4x* +7x+9 e Z ,[x] and a matrix A=|{ 203 288 6 | M,(Z,,).
300 9 12
40 214 92
Hence the base matrix isB= f(A)=| 15 87 257 |mod319.
230 63 204
For key generation, Bob chooses d, =167, 2 <d, <319and find
40 214 92T 131 216 131
Q =|15 87 257| mod319=|286 111 230 |mod319.
230 63 204 14 42 211
For encryption, Alice randomly picksd, =216, 2 <d, <319and calculates
40 214 927" 84 247 210
K=|15 87 257| mod319=|160 291 128 mod319,
230 63 204 4 0 223
131 216 131" 24 214 210
K,=[286 111 230| mod319=|303 77 304 |mod319.
14 42 211 77 220 185
Now Alice wants to communicate with Bob, so she presents a message M as
56 231 87
M =123 86 145|cM,(Z.,).
311 98 3

56 231 871 [24 214 210
C=(M*K,)modN =123 86 145(*/303 77 304 |mod319,
311 98 3| |77 220 185
200 104 146
C=|300 87 6 |mod319.
66 111 276

Then she transmits the ciphertext(C, K) to Bob.
When Bob receives the pair of ciphertext pair, he will first find

84 247 210"
K,=(K)*modN =160 291 128| mod319,
44 0 223
24 214 210
K,=|303 77 304 |mod319.
77 220 185
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Finally he gets original plaintext message after calculating
200 104 146 24 214 210|
(C*K,')modN =300 87 6 [*/303 77 304| mod319,

66 111 276| | 77 220 185

1

56 231 87
(C*K,')modN =|123 86 145 |mod319,
311 98 3
- M

5. The computational Complexity of proposed cryptosystem
The computationally complexity of discrete logarithm problem computing is compared with
the matrix discrete logarithm problem for encryption and decryption is as follows:
e Discrete Logarithm Problem:
I.  Let us consider the size of input plaintext message units ben,.

ii.  The computing complexity of =" mod pis:
T(8)=T(a*)=0(logn,),
arithmetic (multiplication) operation, using Fast Exponentiation Algorithm [] . Then
T(@*) = O(Iog3 nl)- bit operations.
e Matrix Discrete Logarithm Problem:
i.  Let us consider the size of input plaintext message units ben, and the size of base
matrix ben, .
ii.  The computing complexity of A = A2k mod N is:

T(A)=T(A})=0(logn,),
using Repeated-Square and Multiplication Algorithm, then

T(AS) =0(nZ logn, ), multiplication operation,
T(A) = O(n§ log® nl)-bit operations.

6. Security Analysis

First we will talk about the security analysis of signature scheme. For this, let us consider that
an active attacker can obtain, remove, alter/forge and retransmit the message which Alice sends
to Bob. Let us denote that altered/forged data by D, .Here we discuss three main attacks on

signature scheme that is data altering/forgering on signatures, signature repudiation on valid
data.

Let us assume that an attacker replaces the original plaintext message M by forged message
M, . He tries to satisfy the Equation (refer with: Eqg. 5) which is impossible because message

is only involved in the signature generation not in the verification scheme. Hence Equation
(refer with: Eq. 5) only true for original plaintext massage. Without extracting signatures, data
forgery is not possible. The next attempt is to try to find M, forH(M). As we assume that

hash is cryptographically secure, so by using M for hash is also impossible. Hence it is

concluded that a forged data can’t be signed with valid signature.
Now Alice’s strategy is to refuse the recognition of signatures on the valid data. So the valid

signature (a, ]/,(p,l//,n) can be forged by the cryptanalyst and she can sign a plaintext message
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M with the forged signature as(ozf V@i W ,nf) and then the verification procedure is as

follows:
V =(p,Y Yy, JmodN,

= (NPT ), (NPQNT™ ) (N H(M)NT ), mod N,
= (N AN ), (NS™ QNS ™ NS H (M)NJ™ ), mod N .

Since (Nl’“Z)f (Nl‘mZ);t | and aIso(Nl“‘l)f (Nl—m1)¢| , Wherel is the identity matrix in the

multiplcative division semiring. Hence we conclude that(oc’ln)f mod N = (;x’lv)f mod N .

Hence, this ensures us non-repudiation in our proposed signature scheme.

Here we note that the proposed signature scheme is constructed on the non-commutative
division semiring which is based on the polynomial symmetric decomposition problem. We
believe that PSDP is intractable on non-commutative division semiring. Without proper
knowledge of private keys the construction of new signature scheme is impossible. As a result,
cryptanalyst is not able to compute forged signature.

The security of the proposed cryptosystem depends upon the different factors like the number
N, the choice of the polynomial, the order of the matrices and matrix discrete logarithm
problem.

Matrix cryptography depends upon the difficulty of solving MDLP, and it gives us the equal
security for a far smallest bit size. Matrix multiplication is complicated and time consuming,
hence the complexity increases with the choice of matrices of higher order. The intractability
and complexity is increased with the choice of the polynomial and size of base matrix. To find
the inverses in large modulo N becomes more difficult.

7. Conclusion
This manuscript is basically divided into two main parts. In the first part (Section 3), we
propose the digital signatures and also verify its correctness. The key idea is that, we choose a

random polynomial and for any Ae Mn(ZN), we have N,. A cryptanalyst has no way to

identify a polynomial g(x)e Z, [x]such that N, = 0, even he has infinite computation power.

Hence there is a negligible probability to trace the exact private key because the scheme is
based on intractability of PSDP. The proposed signature scheme is sound.

On the other hand, in the next part (Section 4) we develop a novel public key cryptosystem
based on polynomials over non-commutative rings with detailed example. In matrix
cryptography, the computational advantages are the use of the shortest key length which
reduces all the calculation with secure systems. The MDLP is more complicated than DLP and
ECDLP, because if the matrix size is increased, the complexity of matrix operations also
increased. Hence we can say that our proposed scheme gives us good measures of safety.

References
Anshel, 1., Anshel, M. and Goldfeld, D. (1999). “An algebraic method for public-key
cryptography,” Mathematical Research Letters 6, pp. 287-291.

Anshel, 1., Anshel, M. and Goldfeld, D. (2003). “Non-abelian key agreement protocols,”
Discrete Applied Mathematics- Special issue on the 2000 com2MacC, vol. 130, pp. 3-12.

Anshel, 1., Anshel, M. and Goldfeld, D. (2006). “A linear time matrix key agreement protocol
over small finite fields,” Applicable Algebra in Engineering, Communication and
Computing, vol. 17, pp. 195-203.

29



European Journal of Engineering Science and Technology, 3 (1): 22-30, 2020

Birget, J. C., Magliveras, S. S. and Sramka, M. (2006). “On public key cryptosystems based
on combinatorial group theory,” Tatra Mountains Mathematical Publications, vol. 33, pp.
137-148.

Cao, Z., Dong, X. and Wang, L. (2007). “New public key cryptosystems using polynomials
over non-commutative rings,” Journal of Cryptology-1ACR, vol. 9, pp. 1-35.

Cha, J. C, Ko, K. H. Lee, S. J. Han, J. W. and Cheon, J. H. (2001). “An efficient
implementation of braid groups,” in Advances in Cryptology-ASIACRYPT 2001, C. Boyd,
vol. 2248 of Lecture Notes in Computer Science, pp.144-156, Springer, Berlin, Germany.

Dehornoy, P. (2004). “Braid-based cryptography,” Contemporary Mathematics, vol. 360, pp.
5-33.

Diffie, W. and Hellman, M. (1976). “New directions in cryptography,” IEEE Transactions on
Information Theory, vol. 22, pp. 644-654.

ElGamal, T. (1985). “A public key cryptosystem and a signature scheme based on Discrete
Logarithms”, IEEE Transactions on Information Theory, vol. 31, pp. 469-472.

Inam S. and Ali, R. (2018). “A new ElGamal-like cryptosystem based on matrices over
groupring,” Neural Computing and Applications, vol. 29, pp. 1279-1283.

Kanwal S. and Ali, R. (2018). “A cryptosystem with noncommutative platform groups,” Neural
Computing and Applications, vol. 29, pp. 1273-1278.

Ko, K. H. Lee, S. J. Cheon, J. H. Han, J. H. Kang, J. S. and Park, C. (2000). “New public-key
cryptosystems using Braid groups,” CRYPTO '00 Proceedings of the 20th Annual
International Cryptology Conference on Advances in Cryptology, pp. 166-183.

Lee, E. (2004). “Braid groups in Cryptology,” ICICE Transactions on Fundamentals, vol. 87,
pp. 986-992.

Menezes, A. (1993). “Elliptic Curve Public Key Cryptosystems”, The Springer International
Series in Engineering and Computer Science, 1% ed., Springer US.

Myasnikov, A. G., Shpilrain, V. and Ushakov, A. (2007). “Group-Based Cryptography,”
Advanced Courses in Mathematics-CRM Barcelona, 1% ed., Birkhauser Basel.

Peter, W. S. (1994). “Algorithms for quantum computation: discrete logarithms and
factorings,” Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 124-134.

Rivest, R. L., Shamir, A. and Adleman, L. (1978). “A method for obtaining digital signatures
and public key cryptosystems,” Communications of the ACM, vol. 21, pp. 120-126.

Shor, P. W. (1997). “Polynomial-Time algorithms for prime factorization and discrete
logarithms on a quantum computer,” SIAM Journal on Computing, vol. 26, pp. 1484-15009.

Magyarik, R. and Wagner, N. R. (1985). “A public key cryptosystem based on the word
problem,” Workshop on the Theory and Application of Cryptographic Techniques CRYPTO
1984: Advances in Cryptology, vol. 196, pp. 19-36.

30



