

Monitoring Heavy Metal Pollution at Al-Buraihi Sewage Station in Taiz, Yemen Using Napier Grass (*Pennisetum Purpureum Schumach*) as a Bioindicator

Raya Q.A. Al-Ansi 1 , Abdelhafeez M.A. Mohammed 2 , Mahmoud M. Ali 1 , Wadie Ahmed MokbelGhalib 3 , Sajan Chimmikuttanda Ponnappa $^{4(\boxtimes)}$

- ¹ Department of Applied Chemistry, Faculty of Applied Science, International University of Africa, Khartoum, Sudan
- ² Department of Chemistry, Rabigh College of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
- ³ TaizUniversity, Faculty of Medical and Health Sciences, Laboratories department- Taiz, Yemen
- ⁴ Chemistry R and D, VerdeEn Chemicals Pvt. Ltd, D-11, UPSIDC Industrial Area, Masoorie-Gulawati Road, Hapur District, Uttar Pradesh, India

ARTICLE INFO

ABSTRACT

Keywords:

Napier grass soil pollution ICP-OES Bioindicator Heavy metals Pollution Soil pollution or soil contamination is an important environmental concern that causes health for both flora and fauna worldwide. The majority of pollutants have anthropogenic origins. However, some contaminants can occur naturally in soils as components of minerals and can be toxic at high concentrations. The biological materials like microorganisms, plants and animals have been studied to be used in biomonitoring of pollution. Plants are important bioindicators for heavy metals environmental pollution. Napier grass (Pennisetum purpureum Schumach), an animal fodder in Yemen, has been used in this study as a bioindicator for monitoring soil pollution around Al-Buraihi sewage station, Taiz, Yemen, using inductively coupled plasma-optical emission spectrometry (ICP-OES) technique. The concentrations of Cr and Pb were acceptable in all samples according to FAO and WHO, while those of As, Cd, Co, Cu, Fe, Mo, Ni, Se, and Zn were exceeding the limits of WHO in all plant species samples and accordingly recommended not to be used as animal fodder.

1. Introduction

The term soil pollution implies the occurrence of a chemical/ foreign substance at a higher concentration than the normal having adverse effects on life. Most of the pollutants are anthropogenic origin. Even, there are contaminants which are natural origin in the soil as

Cite this article as:

Alansi, R. Q., Mohammed, A. M., Ali, M. M., Mokbel Ghalib, W. A., & Ponnappa, S. C. (2021). Monitoring Heavy Metal Pollution at Al-Buraihi Sewage Station in Taiz, Yemen using Napier Grass (*Pennisetum Purpureum Schumach*) as a Bioindicator. *European Journal of Engineering Science and Technology*, 4(2): 14-33. https://doi.org/10.33422/ejest.v4i2.433

© The Author(s). 2021 **Open Access**. This article is distributed under the terms of the <u>Creative Commons Attribution 4.0 International License</u>, which <u>permits unrestricted use</u>, distribution, and redistribution in any medium, provided that the original author(s) and source are credited.

^{*}Corresponding author E-mail address: sajan.saj@rediff.com

components of minerals. These contaminants on higher concentrations are toxic. Soil contamination occurs when the concentration of a chemical or substance is higher than would occur naturally but is not necessarily causing harm (Rodriguez-Eugenio et al. 2018; N et al. 2018; McLaughlin et al. 2004). Sources of soil pollution include domestic and municipal wastes, industrial and mining wastes, agricultural wastes, radioactive materials and biological agents such as the excreta of humans, animals and digested sewage sludge.

Accumulation of heavy metals in the surrounding can be considered an important environmental pollutant. These heavy metals are toxic, non-degradable and bio-accumulative. Heavy metals are the important environmental pollutants causing pollution problems by increasing their use in products in recent decades(Liang et al. 2011; Galavi et al. 2010). These at a higher concentration generally inhibit plant growth and overall physiological processes. Heavy metals are harmful to human health and the threat to both plant and animal life (Sardar et al. 2013; Hashim and Chu 2004; El-Sheekh et al. 2003). The sources of heavy metals in the environment are natural, agricultural, industrial, domestic effluent and atmospheric sources. The important natural sources of heavy metals are geologic parent material, rock outcroppings, volcanoes, wind dust or wind-blown dust and volcanic eruption. The anthropogenic activities include mining, smelting, pesticides, organic and inorganic fertilizers(Nagajyoti et al. 2010). Besides, some of the heavy metals are essential micronutrients for plants and animals such as Fe, Co, Cu, Mn, Mo, Ni and Zn, their uptake in excess to the plant requirements resulting in toxic effects. They are also called as trace elements due to their presence in trace (10 mg kg⁻¹ or mg L⁻¹) or ultra-trace (1 μg kg⁻¹ or μg L⁻¹) quantities in the environmental matrices(Nagajyoti et al. 2010).

Monitoring of heavy metals in environmental samples is crucial since most of these heavy metals have negative or positive effects on human health even at very low concentrations (Nomngongo et al. 2013). Nowadays, the increasing use of waste chemical and industrial drainage systems represents the most dangerous chemical pollution. Metal contamination of both aquatic and terrestrial ecosystems is a matter of concern because it is widespread and potentially deleterious to aquatic and terrestrial life. Heavy metals can even modify the structure and productivity of both aquatic and terrestrial ecosystems(Koukal et al. 2003; Inthorn et al. 2002). The detection of environmental pollution using biological materials as indicators is a cheap, reliable and simple alternative to the conventional sampling methods(Pinto et al. 2003). Plants can be used as bioindicators for toxicity assessment in aquatic and terrestrial ecosystems(Zurayk et al. 2001). The use of higher plants as biomonitors or bioindicators of heavy metal pollution in the environment has been increased in the past few decades (Pugh et al. 2002; Swaileh et al. 2004; Paoletti 1999). Biological monitoring gives information about the integrated effect of all environmental factors on living organisms. In this article, the contamination of plant species, Napier grass, with heavy metals in the Al-Buraihi sewage station in Taiz, Yemen, is described. Napier grass was selected as a bioindicator for the assessment of the heavy metals contamination.

2. Study Area

Yemen is one of the countries in the world located within the arid and semi-arid areas and characterized by limited and the scarcity of water resources. Yemen suffers from a water problem for drinking and irrigation because of the steadily increasing the population growth and lack and depletion of available water resources (Hamoda 2004). When it comes to the competition in water needs for either drinking or irrigation, it will go to the drinking purpose

other than irrigation. This, of course, harms irrigated agricultural land and as a result of agricultural outputs since the agricultural activity is a key to food security worldwide (Hamoda 2004; Chuma et al. 2015). Yemen is one of the countries facing lack of water hence the reuse of treated wastewater may help in facing a water crisis. Farmers at Al-Buraihi area in Taiz, Yemen, use untreated wastewater for irrigation of plants. This causes soil pollution and health detrimental to human as well as animals.

Taiz sewage station is located in Al-Buraihi area, northeastern of Taiz lies between longitudes 10 ° 39' and 30 °39' E and latitudes 80 ° 150' and 80 °151' N. Al-Buraihi area is located within warm climate semi-dry and the average annual temperature is about 25 °C (Fig 1). Farmers at Al-Buraihi area in Taiz, Yemen, use untreated wastewater for irrigation of plants. This may cause health detrimental to human as well as animals. Since the wastewater stabilization ponds (WSPs) have been established in Taiz, heavy metals had never been examined. This motivated the authors to monitor pollution of soil around Al-Buraihi sewage station through bioindicator Napier grass (*Pennisetum purpureum Schumach*.).

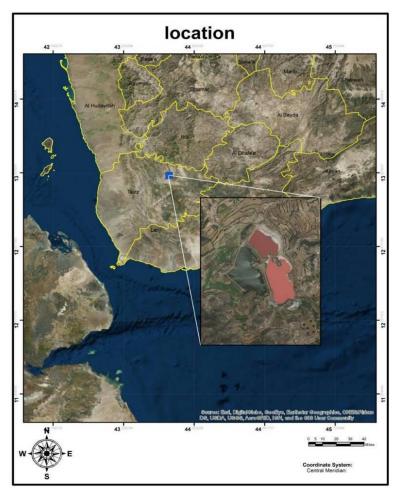


Figure 1. GIS map of the study area

3. Napier grass (Pennisetum purpureum Schumach)

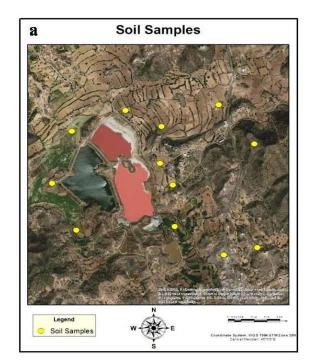
Napier is also known as elephant grass or Uganda grass (Fig. 2). It is a major and highest yielding tropical grass. It is a very adaptable species and can be grown under a wide range of conditions like dry or wet conditions. It is a very important forage in tropical areas due to its high productivity. It is mainly suitable to feed cattle. It's a pioneer species that can be used to control weed (D'Antonio and Vitousek 1992; FAO 2015). It is also used in water storage, to reduce soil losses due to erosion on slopes, pest control and as a biofuel (Francis 2004; Parrott 2005; Adekalu et al. 2007; Khan et al. 2007).

Figure 2. Napier grass (Pennisetum purpureum Schumach)

4. Materials and Methods

4.1. Materials

All chemicals and reagents used in the study were of analytical grade (AR) nitric acid (65% ACS, ISO), perchloric acid (70% ACS, ISO) and sulfuric acid (98% -VWR) extra pure were used. Standard solutions of salts of elements (1000 mg/L) were purchased from Scharlau, Spain. All glassware was soaked in 10% nitric acid and washed with millipore distilled water before use.


4.2. Instrumentation

An inductively coupled plasma-optical emission spectrometer (ICP-OES) with an axially viewed configuration (VISTA MPX, Varian, Mulgrave, Australia) that was equipped with a solid-state detector, Stumar-master mist chamber, and V-groove nebulizer was employed for interested elements determinations using a standard calibration method. The acid digestion of soil samples was performed using a commercial high-pressure laboratory microwave oven (Milestone Ethos 1600 Microwave Labstation, Sorisole, Italy) operating at a frequency of 2450 Hz with an energy output of 900 W and easy control software HPR1000/10Shigh pressure segmented rotor. Electrical conductivity (EC) and soil reaction (pH) were determined *in-situ* using a multipurpose electronic Jenway 4520 Conductivity/TDS Meter and Hanna portable pH meter respectively. Organic matter contents were measured as in Walkey and Black method (Preer et al. 1980; Walkley and Black 1934).

4.3. The sampling of Soil and Plant species

To evaluate the influence of wastewater irrigation on the heavy metal concentrations in soil, twelve samples of soil were collected from the study area. Sampled were collected randomly from the surface soil (0.0-30cm in depth) manually using an auger and carefully packed into polythene bags and eventually brought to the laboratory. Locations of these twelve samples of soil were mapped using GPS instrument and GIS software (ArcGIS10.3) (Fig. 3a).

Plant samples were collected randomly and manually using vinyl gloves and kept in brown bags and brought to the laboratory. The plant samples were rinsed with deionized water and dried in an oven at 70 °C for 48hrs and then ground to powder. The locations of plant samples collected were recorded (Fig. 3b).



Figure 3: GIS map of locations of a) wastewater and b) plant species samples collected

5. Sample Preparation

5.1. Soil sample preparation

Soil samples were air-dried, crushed and passed through 0.45 mesh sieve and stored at ambient temperature and glass before analysis (Lindsay and Lyman, 1979). The digested samples of soil were diluted to 50mL with distilled water. All reagents used were of analytical grade (AR) and purchased from (Scharlau-JPN) including standard stock solutions of known concentration of different heavy metals. All analyses were done in triplicates.

5.2. Plant species sample preparation

The fresh plant species samples were brought to the laboratory and washed primarily with running tap water, followed by three consecutive washing with distilled water to remove the soil particles. Samples were dried in an oven at 70 °C for 48 h and then ground to powder. The digested plant species samples were diluted to 50mL with distilled water. Heavy metal concentrations of plant samples were estimated by ICP-OES Varian (Vista-MPX). All analyses were done in triplicates.

6. Statistical analysis

The descriptive statistical parameters, mean, standard deviation, and correlation analysis were calculated using the IBM SPSS version 26 software. The data collected were discussed in terms of average and 95% confidence intervals. Statistical differences between the means were compared using the least significant differences (LSD) at probability $p \le 0.05$ (significant).

7. Results and Discussion

The Physico-chemical properties and heavy metal composition of the soil samples are given in Table 1. The descriptive statistical parameters, mean and standard deviation, were calculated for all the parameters of the soil sample which is given in Table 2. The graphical representation of the physicochemical parameters is given in Fig 4. From Fig 4 and Table 2, it is evident that the electrical conductivity (EC) of the soil ranged from 1.10 to 5.70 dS/m with a mean value of 6.92dS/m and StDev of 4.34. There are significant differences in EC measurements when EC limits are 1.2 (p=0.000) and 2.4 (p=0.001). Electrical conductivity (EC) of soils irrigated with wastewater was increased due to the higher concentration of electrolytes such as Na⁺ and K⁺ in wastewater (Mojiri 2011). The pH, values of the soil samples ranged from 5.90 to 7.70 with an average of 7.17. Therefore, the pH of the soil is mostly neutral to mild acidic for all soil samples. There were significant differences in pH values (p=0.002) when the pH was 6.60. However, there were no significant differences in pH values (p=0.368) when the pH was 7.30. The irrigation with wastewater decreased the pH of the soil due to the decomposition of organic matter and the production of organic acids. Soil irrigated with wastewater at first may cause a decrease in the pH of the soil, but later, it may cause an increase in the pH of the soil (Mojiri 2011). Fortunately, in this study, all pH measurements were within the permissible limits according to WHO (WHO 2006). Sodium adsorption ratio (SAR) is a measure of the suitability of water for use in agricultural irrigation, as determined by the concentrations of solids dissolved in the water. It is also a measure of the sodicity of soil, as determined from analysis of water extracted from the soil. The SAR mean value was 4.43, the minimum value was 1.24 and the maximum was 9.23 with StDev of 2.037. There were significant variation differences (p=0.000). SAR is the only factor in determining the suitability of water for irrigation. Generally, higher the sodium adsorption ratio, less suitability is the water for irrigation. Irrigation using water with high sodium adsorption ratio may require soil amendments to prevent long-term damage to the soil (Reeve et al. 1954). The results of this study were within the permissible limits (WHO 2006). Based on organic matter content, soils are characterized as a mineral or an organic. The mineral soils form most of the world's cultivated land and may contain from a trace to 30% organic matter. The organic soils are naturally rich in organic matter principally for climatic reasons. Although the latter contains more than 30% organic matter, it is precisely for this reason that they are not vital cropping soil. The results showed that the mean organic matter value was 31.24 and the minimum value was 14.71 and maximum value 42.14 of the analyzed samples of soil with StDev of 8.56 and significant variation differences (p=0.000) between the studied samples. Most samples readings were higher than the permissible limits(WHO 2006). The irrigation with untreated wastewater increased OM content of soil (Mojiri 2011). From the results of this study, Al-Buraihi's soil can be classified as organic soil according to FAO limits(Rodriguez-Eugenio et al. 2018).

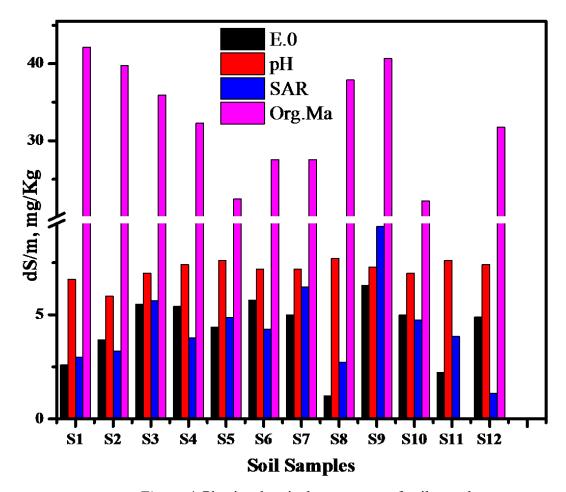


Figure 4. Physicochemical parameters of soil samples

7.1. Elemental analysis

The measured concentrations of major elements in the different soil samples are given in Table 2. The results of this study showed that half of the elements investigated were fallen within the permissible limits recommended at least by one of these standards of the World Health Organization (WHO 2006) and others (CCME 2007; Alzoubi et al. 2013; H. Bowen 1979). These elements include the macronutrients (K, Ca and Mg) and micronutrients (Ba, Cd, Co, Cr, Fe, Mn, Ni, Pb and Sr).

On the other hand, the concentrations of the other group of elements were all exceeded the permissible limits recommended at least by one of the above-mentioned standards. These elements are heavy metals such as Ag, As, B, P, Cu, Mn, Mo, Sb, Sc, Se, Sn and Zn.

Table 1. *ICP results of the soil samples collected around Al-Buraihi sewage station*

Heavy metal	s S1	S2	S3	S4	S5	S6
Ag	22.500	8.412	4.023	2.559	1.301	2.212
Al	6607.046	7012.326	6164.324	3072.491	5901.064	5014.649
As	7.775	11.893	7.672	5.918	14.557	10.891
В	16.776	33.700	14.744	3.035	44.479	40.738
Ba	29.078	21.714	22.639	21.158	22.896	29.335

Cu 56.563 37.783 24.536 18.048 30.971 22.537 Po 10440.895 11455.889 9599.630 5759.349 11076.966 11888. U 7.127 6.934 7.877 4.215 6.051 7.240 Mn 294.180 222.773 294.371 271.228 325.633 347.47 NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.48 Mg							
Cr 22.110 16.699 16.463 9.432 16.759 16.812 Cu 56.563 37.783 24.536 18.048 30.971 22.537 Po 10440.895 11455.889 9599.630 5759.349 11076.966 11888. U 7.127 6.934 7.877 4.215 6.051 7.240 Mn 294.180 222.773 294.371 271.228 325.633 347.47 Mo 0.717 0.713 0.224 0.491 0.434 0.743 NI 21.281 21.712 21.948 11.991 25.625 21.915 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 13	Cd	1.090	0.767	0.513	0.469	0.715	0.770
Cu 56.563 37.783 24.536 18.048 30.971 22.537 Po 10440.895 11455.889 9599.630 5759.349 11076.966 11888 U 7.127 6.934 7.877 4.215 6.051 7.240 Mn 294.180 222.773 294.371 271.228 325.633 347.47 NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se	Co	0.000	0.000	0.000	0.000	0.000	0.000
Po 10440.895 11455.889 9599.630 5759.349 11076.966 11888. U 7.127 6.934 7.877 4.215 6.051 7.240 Mn 294.180 222.773 294.371 271.228 325.633 347.47 Mo 0.717 0.713 0.224 0.491 0.434 0.743 NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.48 Se 1	Cr	22.110	16.699	16.463	9.432	16.759	16.812
U 7.127 6.934 7.877 4.215 6.051 7.240 Mn 294.180 222.773 294.371 271.228 325.633 347.47 Mo 0.717 0.713 0.224 0.491 0.434 0.743 NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367	Cu	56.563	37.783	24.536	18.048	30.971	22.537
Mn 294.180 222.773 294.371 271.228 325.633 347.47 Mo 0.717 0.713 0.224 0.491 0.434 0.743 NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K <t< td=""><td>Po</td><td>10440.895</td><td>11455.889</td><td>9599.630</td><td>5759.349</td><td>11076.966</td><td>11888.279</td></t<>	Po	10440.895	11455.889	9599.630	5759.349	11076.966	11888.279
Mo 0.717 0.713 0.224 0.491 0.434 0.743 NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg	U	7.127	6.934	7.877	4.215	6.051	7.240
NI 21.281 21.712 21.948 11.991 25.625 21.915 Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 <	Mn	294.180	222.773	294.371	271.228	325.633	347.470
Pb 22.528 10.085 3.182 3.058 3.741 3.766 Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0	Mo	0.717	0.713	0.224	0.491	0.434	0.743
Sb 2.199 1.518 2.094 2.170 1.972 2.412 So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 1506 <	NI	21.281	21.712	21.948	11.991	25.625	21.915
So 2.275 2.006 3.587 2.368 9.574 4.071 Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 1506 E.C 2.600 3.800 5.500 5.400 4.00 5.700 <	Pb	22.528	10.085	3.182	3.058	3.741	3.766
Sn 6.797 7.026 7.064 4.298 8.857 2.699 Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 P 16100.921 12376.566 18858.595 6160.931 11040.111	Sb	2.199	1.518	2.094	2.170	1.972	2.412
Zn 210.129 112.630 53.524 32.443 58.205 54.425 Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297	So	2.275	2.006	3.587	2.368	9.574	4.071
Sr 135.054 87.011 239.146 555.422 106.217 219.49 Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560	Sn	6.797	7.026	7.064	4.298	8.857	2.699
Se 18.727 16.541 16.570 12.983 25.225 17.359 Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511 SI	Zn	210.129	112.630	53.524	32.443	58.205	54.425
Ca 2908.367 2442.477 3531.033 3848.084 3232.072 3452.9 K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511 SI Heavy metals 87 S8 S9 S10 S11 S12 <t< td=""><td>Sr</td><td>135.054</td><td>87.011</td><td>239.146</td><td>555.422</td><td>106.217</td><td>219.491</td></t<>	Sr	135.054	87.011	239.146	555.422	106.217	219.491
K 1502.067 1363.736 1951.939 1139.608 2344.416 1834.8 Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300. E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511 SI Heavy metals 87 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 As	Se	18.727	16.541	16.570	12.983	25.225	17.359
Mg 2512.013 2537.897 2768.344 2625.146 3130.744 2772.3 Na 909.577 971.118 1863.972 1282.502 1630.086 1404.0 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As	Ca	2908.367	2442.477	3531.033	3848.084	3232.072	3452.992
Na 909.577 971.118 1863.972 1282.502 1630.086 1404.04 P 16100.921 12376.566 18858.595 6160.931 11040.111 15300.08 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 Ba	K	1502.067	1363.736	1951.939	1139.608	2344.416	1834.835
P 16100.921 12376.566 18858.595 6160.931 11040.111 15300 E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 Ba 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758	Mg	2512.013	2537.897	2768.344	2625.146	3130.744	2772.320
E.C 2.600 3.800 5.500 5.400 4.400 5.700 pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.38	Na	909.577	971.118	1863.972	1282.502	1630.086	1404.011
pH 6.700 5.900 7.000 7.400 7.600 7.200 SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000	P	16100.921	12376.566	18858.595	6160.931	11040.111	15300.943
SAR 2.969 3.269 5.679 3.889 4.876 4.297 Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.19	E.C	2.600	3.800	5.500	5.400	4.400	5.700
Org.Ma 42.143 39.763 35.913 32.278 22.458 27.560 Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu	pН	6.700	5.900	7.000	7.400	7.600	7.200
Soil text. I. 511 SL CL 511. SI. Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 1006		2.969	3.269	5.679	3.889	4.876	4.297
Heavy metals S7 S8 S9 S10 S11 S12 Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2	_	42.143	39.763	35.913	32.278	22.458	27.560
Ag 15.249 1.719 9.423 2.323 0.000 0.603 Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001	Soil text.						
Al 7228.855 3481.180 6675.699 8426.157 7174.648 7583.7 As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	Heavy metals	S7	S8	S9	S10	S11	S12
As 13.338 5.040 9.650 12.303 7.171 7.310 B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	Ag	15.249	1.719	9.423	2.323	0.000	0.603
B 30.108 0.000 49.693 15.372 9.646 14.376 Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	Al	7228.855	3481.180	6675.699	8426.157	7174.648	7583.730
Ba 17.758 27.714 33.344 23.950 24.001 31.573 Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	As	13.338	5.040	9.650	12.303	7.171	7.310
Cd 0.810 0.380 0.983 0.768 0.580 0.680 Co 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	В	30.108	0.000	49.693	15.372	9.646	14.376
Co 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	Ba	17.758	27.714	33.344	23.950	24.001	31.573
Cr 26.198 11.295 43.172 21.128 19.127 20.849 Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253							
Cu 28.981 14.279 51.460 36.872 23.581 21.416 Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253	Co	0.000	0.000	0.000	0.000	0.000	
Po 10069.771 6116.543 11547.884 11708.337 8848474 9497.2 U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253		26.198					20.849
U 9.640 3.782 6.414 7.954 7.247 9.001 Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253		28.981	14.279		36.872		21.416
Mn 392.207 245.162 356.802 401.504 298.910 374.20 Mo 2.229 0.005 3.027 0.464 0.364 0.253							9497.265
Mo 2.229 0.005 3.027 0.464 0.364 0.253							
							374.205
NI 31.170 12.510 38.417 33.003 24.749 26.802							
							26.802
Pb 5.694 4.849 16.490 5.652 34.309 5.705							
Sb 2.337 0.459 2.176 3.302 0.736 1.477							
So 7.357 2.637 5.715 5.056 2.133 1.570							
Sn 7.381 1.534 5.707 4.373 7.251 0.000							
	Zn	71.605	39.427	15.837	66.541	38987	47.830
	Sr	362.293	93.236	255.676	99.059	135.105	131.666
Sr 362.293 93.236 255.676 99.059 135.105 131.66							20.591

European Journal of Engineering Science and Technology, 4(2): 14-33, 2021

Ca	3666.041	3226.545	3438.979	3373.564	3274.216	3385.526
K	1920.526	1093.745	1804.765	1922.878	1242.262	1918.303
Mg	2767.890	2191.961	2686.407	2794.511	2645.203	2709.195
Na	2093.279	821.182	2987.249	1548.847	1262.337	399.912
P	12400.760	3713.548	12605.787	6204.968	2495.840	2564.348
E.C	5.000	1.100	6.400	5.000	2.240	4.900
pН	7.200	7.700	7.300	7.000	7.600	7.400
SAR	6.326	2.722	9.232	4.753	3.960	1.237
Org.Ma	27.554	37.882	40.679	22.196	14.71.4	31.783
Soil text.	SCI	SC1	SL	541	CL	SICI.

Table 2. Descriptive statistics of the elements in soil samples $(n-12 \mod ka)$

Parameter	Minimum	Maximum	Mean	StDev	Guidelines
Ag	0.000	22.50	5.86	6.904	3.0 ^b and 20.0 ^a
As	5.040	14.557	9.459	3.091	8.0 ^b and 12.0 ^a
В	0.000	49.693	22.722	16.509	1.70 ^b and 2.0 ^a
Ba	17.758	33.344	25.43	4.705	302.0 ^b and 750.0 ^a
Cd	0.380	1.09	0.71	0.205	4.0^{d} and 1.40^{a}
Co	0.000	0.00	0.00	0.000	8.0 ^d and 40.0 ^a
Cr	9.432	43.172	20.004	8.603	64.0^{a}
Cu	14.279	56.563	30.586	13.011	20.0° and 63.0°
Fe	5759.349	11888.279	9834.14	2063.339	37000°
Mn	222.773	401.504	318.704	57.300	800.0°
Mo	0.005	3.027	0.805	0.895	0.60^{b} and 5.0^{a}
Ni	11.991	38.417	24.26	7.675	107.0 ^b and 50.0 ^{a,d}
Pb	3.058	34.309	9.922	9.747	70.0^{a} , 84.0^{b} and 35.0^{d}
Sb	0.459	3.302	1.904	0.766	20.0^{a} , 36.0^{b} and 1.0^{d}
Sc	1.570	555.422	201.615	2.476	7.0^{d}
Se	0.00	9.574	4.029	2.699	$1.0^{\rm a}$ and $6.0^{\rm b}$
Sn	0.00	8.857	5.249	2.699	5.0 ^a
Sr	12.983	26.611	19.495	4.395	250.0 ^d
Zn	15.837	210.129	66.799	51.106	200.0a; 50.0c and 90.0d
P	2495.840	18858.595	9985.277	5586.823	$20^{\rm c}$
Ca	2442.477	3848.084	3314.99	361.802	14000°
K	1093.745	2344.416	1669.923	391.543	13000 ^e
Na	399.912	2987.249	1431.173	678.979	300 < ^c
Mg	2191.961	3130.744	2678.469	219.92	6000^{c}
EC (dS/m)	1.10	5.70	6.92	3.45	2.0^{a}
pН	5.90	7.70	7.17	0.49	$6.0-8.0^{a}$
OM (%)	14.714	42.143	31.244	8.566	1.29 < ^c
SAR (meq/L)	1.237	9.232	4.434	2.037	5.0 ^a

^a Canadian Soil Quality for the Protection of Environmental and Human Health (CCME 2007).

Table 2, clearly depicts that Silver (Ag) doesn't show any significant difference (P=0.179) according to WHO limits, with a mean value of 5.86 and range of 0.00 as a minimum to 22.50 as a maximum with StDev of 6.90. The silver (Ag) originates mainly from small scale photography, household products such as polishes and domestic water treatment devices(Shafer et al. 1998; Adams and Kramer 1999). Similarly, arsenic doesn't show any significant difference (p=0.130) according to WHO limits, with a mean value of 9.45 and range of 5.04 as a minimum to 14.56 as a maximum, with StDev of 3.09. Arsenic inputs come from natural background sources and household products such as washing products, medicines, garden products, wood preservatives, old paints and pigments. Arsenic is present mainly as dimethyl arsenic acid (DMAA) and as As(III) arsenite in urban effluents and sewage sludge (Thornton et al. 2001). In this study, its level exceeded the permissible limit. This results in toxicity of soil and might travel from plants to animals through biomagnification. Sodium (Na) levels ranged from 399.91 to 2987.24 with mean of 1431.17, StDev of 678.97. The accumulation of sodium in the soil causes the salinity

^b WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater(WHO 2006).

^c Analysis Methods for Soil, Plant, Water and Fertilizers(Alzoubi et al. 2013).

^d Environmental Chemistry of the Elements. 1979, Academic Press, New York, USA (H. J. M. Bowen 1979).

and sodicity of soil and hence affects plants growth(Reeve et al. 1954). Phosphorus (P) values ranged between 2495.84 and 18858.60, the mean of 9985.27 and StDev of 5586.82 with a significant variation (p=0.000). These readings are far higher than the standard value. An excessive amount of phosphorous in the soil is stunted plant growth. It also decreases the plant's ability to uptake Zn and eventually bleaching of plant tissue may occur. Boron (B) shows significant differences (p=0.000) (p=001) according to WHO limits, with a mean value of 22.72 and range of 0.00 as a minimum to 49.69 as a maximum, with StDev of 16.50. Copper (Cu) shows significant differences (p=0.000) according to WHO limits, with mean value 30.58 and range of 14.28 as a minimum to 56.56 as a maximum with StDev of 13.01. The Cu comes mainly from corrosion and leaching of plumbing, fungicides (copper(II) chloride), pigments, wood preservatives and antifouling paints. Molybdenum (Mo) values ranged from 0.01 to 3.03 with mean and st.Dev of 0.80 and 0.89 respectively and the values didn't show significant differences (p=0.444) according to WHO limits. Antimony (Sb) shows significant differences (p=0.000) according to WHO limits, with a mean value of 1.90 and range of 0.46 as a minimum to 3.30 and with StDev of 0.76. Scandium (Sc) levels show significant differences (P=0.000), the mean value of 19.49, the range from 12.98 to 87.01 with StDev of 4.39. Selenium (Se) mean value was 4.02 and the range was 1.57 to 9.57 with St.Dev 2.47 and the values didn't show significant differences (p=0.019) according to WHO limits. Selenium is among the potentially toxic metalloids found in urban wastewaters even in low concentration (WHO 2006). These are of importance due to their potential effects on human/animal health. Few studies have had taken these into account (Thornton et al. 2001). Selenium comes from food products, food supplements, shampoos, other cosmetics, old paints and pigments. Tin (Sn) values ranged from 0.00 to 8.86 with mean and StDev of 5.24 and 2.69 respectively and significant differences (P=0.000). The levels of zinc (Zn) ranged from 15.84 to 210.13 with mean and St.Dev of 66.79 and 51.10 respectively and Zn shows sonication differences (p=0.002) according to WHO limits. Although Zn is important for plants in producing chlorophyll but in high levels of zinc cause severe damage to roots of plants which indicated by yellowing and wilting. Also, high levels of zinc inhibit the uptake of iron (Fe), so cause zinc toxicity.

Similarly, the heavy metal composition of the plant samples was performed. The results obtained are given in Table 3. The descriptive statistical parameters, such as mean and standard deviation, were calculated. The results obtained are given in Table 4. The concentrations of As, Cd, Co, Cu, Fe, Mo, Ni, Se, and Zn were exceeding the limits of WHO in all plant samples whereas the concentration of Cr in all plant species was within permissible limits according to WHO(WHO 2006). Fortunately, Pb was not detected in all plant samples investigated since the presence of this element in high concentration can inhibit the growth of plant cell. According to FAO, the maximum permissible limit is 5.0 mg/L, (FAO 1985). The absence of Pb may be due to its concentration in samples was under the limit of detection or may be absent. If it is absent, it may be attributed to the type of industrial effluents. To our best knowledge, there is no battery industry in and around Taiz city. Also, few vehicles around this area were one of the reasons that reduce amounts of lead. In this study, the concentration of arsenic is higher than the recommended limit by (2006) and it was released to the atmosphere from both natural and anthropogenic sources such as volcanic activity and pesticides. The concentrations of iron (Fe)in all plant species samples were higher than permissible limit according to WHO (2006) although iron is an essential element for all plants and has many important biological roles such as photosynthesis, chloroplast development and chlorophyll synthesis(Nagajyoti et al. 2010).

Table 3.

ICP results of the plant species samples collected around Al-Buraihi sewage station

	P1	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12
Ag	0.392	0.000	0.000	0.000	0.000	0.464	0.000	0.000	0.000	0.000	0.000	0.000
Al	0.000	0.000	0.000	0.000	8.309	0.000	0.000	0.000	0.000	0.000	0.000	0.000
As	1.489	0.126	0.507	0.489	0.948	1.215	0.695	0.555	1.007	0.198	0.614	1.087
В	13.501	14.844	11.380	5.806	5.428	17.527	11.959	12.425	7.571	0.921	4.843	18.221
Ba	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Be	0.007	0.000	0.000	0.000	0.000	0.050	0.002	0.001	0.000	0.000	0.000	0.001
Cd	0.025	0.073	0.000	8.338	0.239	0.000	0.000	0.504	0.000	0.000	0.077	0.005
Co	0.000	0.006	0.000	0.000	0.696	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Cr	0.020	0.057	0.000	0.000	0.034	0.070	0.030	0.000	0.000	0.000	0.035	0.023
Cu	0.000	0.000	0.000	58.767	13.800	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Fe	0.000	0.000	0.000	121.672	221.611	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Li	0.296	0.032	0.153	0.218	0.230	0.285	0.330	0.000	0.372	0.190	0.086	0.231
Mn	0.000	64.899	0.000	16.260	70.085	7.041	0.000	0.000	0.000	0.000	26.977	0.000
Mo	1.096	3.983	0.000	0.000	0.000	4.201	0.256	0.000	1.313	0.000	0.018	0.000
Ni	0.000	0.000	0.000	2.226	7.311	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Pb	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
SO	0.025	0.000	0.000	0.000	0.000	0.499	0.000	0.000	0.779	0.000	0.000	0.000
Se	0.000	0.131	1.738	0.846	0.727	3.730	0.000	0.000	0.231	0.034	0.000	0.000
Sn	0.316	0.061	1.702	0.000	0.448	0.870	0.000	1.461	0.006	0.432	1.012	0.502
Zn	0.000	37.679	0.000	266.445	107.050	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Ca	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
K	647.043	190.960	845.744	0.000	147.677	551.147	675.709	0.000	109.957	0.000	0.000	486.717
Mg	963.202	1345.790	1123.103	502.797	764.709	1103.787	1274.331	1410.638	0.000	0.000	583.820	1275.728
Na	2803.105	4921.312	3122.965	0.000	0.000	1279.217	3268.770	984.689	0.000	0.000	1058.000	1997.590
P	0.000	21.116	1.610	380.562	448.740	0.000	0.000	0.000	21.053	358.900	10.955	22.689

Table 4. Descriptive statistics of the elements in plant species samples (n=12, mg/kg)

Element	Minimum	Maximum	Mean	StDev	P-value	Reference
Ag	0.000	0.46	0.071	0.17	0.000	-
As	0.126	1.49	0.74	0.41	0.063	0.10 a
Cd	0.000	8.34	0.77	2.39	0.000	0.01 a
Co	0.000	0.70	0.06	0.20	0.243	0.05 a
Cr	0.000	0.07	0.02	0.02	0.287	0.10 a
Cu	0.000	58.77	6.05	17.07	0.334	0.20 a
Fe	0.000	221.61	28.61	70.12	0.008	5.00 a
Mn	0.000	70.09	15.43	25.77	0.185	0.20 a
Mo	0.000	4.20	0.91	1.56	0.000	0.10 b
Ni	0.000	7.31	0.80	2.15	0.062	0.50 c
Pb	ND	ND	ND	ND	ND	5.00 a
Sb	0.000	0.78	0.11	0.26	0.227	-
Se	0.000	3.73	0.62	1.11	0.168	0.02 a

Sn	0.000	1.70	0.57	0.58	0.080	-
Zn	0.000	266.45	34.27	79.64	0.006	2.00 a

^a WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater(WHO 2006)

^b Analysis Methods for Soil, Plant, Water and Fertilizers (Alzoubi et al. 2013)

^e Irrigation water. Yemen Standardization, Metrology & Quality Control (YSMO150/2001 2001)

Table 5. Pearson correlation test for common parameters of Soil and plant samples collected around at Al-Buraihi sewage station

Co	rrelations																					
		Ag	Al	As	В	Ba	Cd	Co	Cr	Cu	Mn	Mo	Ni	Pb	Sc	Sn	Zn	Ca	K	Mg	Na	P
Ag	Pearson Correlation Sig. (2- tailed)	1	1.000**	1.000**	1.000**	1.000**	-1.000**	-1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Al	Pearson Correlation Sig. (2- tailed)	1.000**	1	1.000**	1.000**	1.000**	-1.000**	-1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1	1.000**	1.000**	-1.000**	* -1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
В	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1	1.000**	-1.000**	-1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Ba	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1	-1.000**	-1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Cd	Pearson Correlation Sig. (2- tailed)	-1.000**	-1.000**	* -1.000**	* -1.000**	* -1.000**	* 1	1.000**	-1.000**	-1.000**	* -1.000**	1.000**	-1.000**	-1.000**	-1.000**	* -1.000**	* -1.000**	* -1.000**	* -1.000**	* -1.000**	1.000**	-1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Co	Pearson Correlation Sig. (2- tailed)	-1.000**	-1.000**	* -1.000**	* -1.000**	* -1.000**	* 1.000**	1	-1.000**	-1.000**	* -1.000**	1.000**	-1.000**	-1.000**	-1.000**	* -1.000**	* -1.000**	* -1.000**	* -1.000**	* -1.000**	1.000**	-1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Cr	Pearson Correlation	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	-1.000**	1	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**

Cor	rrelations																					
	Sig. (2-	Ag	Al	As	В	Ba	Cd	Co	Cr	Cu	Mn	Mo	Ni	Pb	Sc	Sn	Zn	Ca	K	Mg	Na	P
	tailed) N	2	2	2.	2	2	2.	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Pearson	_	_	_	_	<u>Z</u>	_	-	_	-	_				~		_	_	<u> </u>	<u> </u>	<u> </u>	_
Cu	Correlation Sig. (2- tailed)	1.000***	1.000	1.000**	1.000**	1.000**	-1.000°	-1.000°°	1.000**	1	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000***	1.000**	1.000**	1.000**	-1.000**	1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
IVIII	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	* 1.000**	1.000**	1	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* 1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Pearson Correlation Sig. (2- tailed)	-1.000**	* -1.000**	* -1.000**	* -1.000**	* -1.000**	* 1.000**	1.000**	-1.000**	* -1.000**	* -1.000**	1	-1.000**	-1.000**	-1.000**	* -1.000**	* -1.000*	* -1.000*	* -1.000**	* -1.000**	* 1.000**	-1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
INI	Pearson Correlation Sig. (2- tailed)					1.000**								1.000**	1.000**	1.000**	1.000**	1.000**			-1.000**	
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	* 1.000**	1.000**	1.000**	-1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* 1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	* 1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* 1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**	-1.000**	* 1.000**
	N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Zn	Pearson	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	· -1.000**	1.000**	1.000**	1.000^{**}	-1.000**	1.000**	1.000^{**}	1.000**	1.000**	1	1.000**	1.000**	1.000**	-1.000**	1.000**

Correlations																					
	Ag	Al	As	В	Ba	Cd	Co	Cr	Cu	Mn	Mo	Ni	Pb	Sc	Sn	Zn	Ca	K	Mg	Na	P
Correlation	1																				
Sig. (2-tailed)																					
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1	1.000**	1.000**	-1.000**	1.000*
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
K Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1	1.000**	-1.000**	1.000*
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Mg Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1	-1.000**	1.000*
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Na Pearson Correlation Sig. (2- tailed)	1.000*	* -1.000**	-1.000**	-1.000**	· -1.000**	1.000**	1.000**	-1.000**	-1.000**	-1.000**	1.000**	-1.000**	-1.000**	-1.000**	* -1.000**	· -1.000**	-1.000**	* -1.000**	* -1.000**	1	-1.000
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Pearson Correlation Sig. (2- tailed)	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	* -1.000**	1.000**	1.000**	1.000**	-1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	-1.000**	1
N	2	2	2	2	2	2	2	2	2	2	2	2	2	2.	2	2	2	2	2	2.	2

^{**} Correlation is significant at the 0.01 level (2-tailed).

8. Correlation Test

The correlation analysis between the soil samples and the plant species samples is given in Table 5. In the present work, we have attempted to understand the relationship between the soil samples and plant sample using correlation analyses for the results obtained using ICP. In statistics, the correlation test is used to determine the degree of a linear relationship between the two variables. Noteworthy that the range is between -1 to 1 in a correlation analysis. If the values obtained are nearer to 1 or -1, implies that there is a strong positive linear relationship between the correlated variables, if the values are nearer to 0, indicates that there is no linear relationship between two variables. The ICP results obtained for soil samples and Plant species samples were subjected to correlation analysis. Based on the statistical results obtained, we can say that there is a strong correlation between the soil and plant samples and are significant at 0.01 level, since all the results obtained are -1 and 1. This indicates that the micronutrients, macronutrients and the heavy metals, from the wastewater used for irrigation around Al-Buraihi sewage station, has been transferred to the soil, and from soil to the plants through biomagnification.

9. Conclusion

Sampling, ICP analysis and statistical analysis of both soil and plant samples were carried out. ICP analysis revealed that almost half of the elements examined falls within the permissible limits recommended by the international standards which include both the macronutrients (K, Ca and Mg) and micronutrients (Ba, Cd, Co, Cr, Fe, Mn, Ni, Pb and Sr). Apart from these elements heavy metals such as Ag, As, B, P, Cu, Mn, Mo, Sb, Sc, Se, Sn and Zn exceeded the permissible limits recommended by the above-mentioned standards. Statistical analysis revealed that there is a significant correlation between the parameters of the soil and plant samples, signifying the possible intake of the nutrients and heavy metals by the Napier grass species. The number of heavy metals intaken by the Napier grass species demonstrates that this species can be used as a bio-indicator to determine the heavy metals present in the soil. Meanwhile, the Napier grass grown on contaminated soil should not be used as fodder for cattle since there are possibilities of the moment of these heavy metals from species to species through the process of bio-magnification.

Acknowledgements

The author wishes to acknowledge all who have contributed directly or indirectly in the present work.

Reference

- Adams, N. W., & Kramer, J. R. (1999). Silver speciation in wastewater effluent, surface waters, and pore waters. *Environmental Toxicology and Chemistry*, 18(12), 2667–2673. https://doi.org/10.1002/etc.5620181203
- Adekalu, K. O., Olorunfemi, I. A., & Osunbitan, J. A. (2007). Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria. *Bioresour Technol*, 98(4), 912-917. https://doi.org/10.1016/j.biortech.2006.02.044
- Alzoubi, M. M., Alhosny, A. M., & Drgham, H. (2013). *Analysis methods for soil, plant, water and fertilizers* (Vol. 1). Damascus, Syria: Ministry of Agriculture and Agrarian Reform.

- Bowen, H. (1979). Environmental Chemistry of the Elements. London, UK: Academic Press.
- Bowen, H. J. M. (1979). *Environmental chemistry of the elements*. London; New York: Academic Press.
- CCME, C. C. o. M. o. t. E. (2007). Canadian Soil Quality Guidelines for the Protection of Environmental and Human Health. In C. E. Q. Guidelines (Ed.): Canadian Council of Ministers of the Environment 2007.
- Chuma, F. M., Mtei, K. M., & Njau, K. N. (2015). Assessment of heavy metals in treated wastewater used for the irrigation of vegetable plants in Arusha city. *International Journal of Research in Chemistry and Environment*, 5(1), 54-60.
- D'Antonio, C. M., & Vitousek, P. M. (1992). Biological invasions by exotic grasses, the grass/fire cycle, and global chance. *Annu. Rev Ecol. Syst*, 23, 63-87. https://doi.org/10.1146/annurev.es.23.110192.000431
- El-Sheekh, M., El-Naggar, A., Osman, M., & El-Mazaly, E. (2003). Effect of cobalt on growth, pigments and the photosynthetic electron transport in *Monoraphidium minutum* and *Nitzchia perminuta*. *Braz J Plant Physiol*, *15*(3), 159-166. https://doi.org/10.1590/S1677-04202003000300005
- FAO. (2015). Grassland Index. A searchable catalogue of grass and forage legumes. FAO,
- FAO (1985). Water quality for irrigation for agriculture. Irrigation and Drainage Paper. (pp. 1-130).
- Francis, J. K. (2004). Pennisetum purpureum Schumacher. Wildland shrubs of the United States and its Territories: thamnic descriptions. *1*, 830
- Galavi, M., Jalali, A., Ramroodi, M., Mousavi, S. R., & Galavi, H. (2010). Effects of treated municipal wastewater on soil chemical properties and heavy metal uptake by Sorghum (*Sorghum bicolor L.*). *J Agri Sci*(3), 235-241. https://doi.org/10.5539/jas.v2n3p235
- Hamoda, M. (2004). Water strategies and potential of water reuse in the south Mediterranean countries. *Desalination*, 165(15), 31-41. https://doi.org/10.1016/S0011-9164(04)00209-7
- Hashim, M., & Chu, K. (2004). Biosorption of cadmium by brown, green and red seaweeds. *Chem Eng J*, 97, 249-255. https://doi.org/10.1016/S1385-8947(03)00216-X
- Inthorn, D., Sidtitoon, N., Silapanuntakul, S., & Incharoensakdi, A. (2002). Sorption of mercury, cadmium and lead by microalgae. *ScienceAsia*, 28, 253-261. https://doi.org/10.2306/scienceasia1513-1874.2002.28.253
- Khan, Z. R., Midega, C. A. O., Wadhams, L. J., Pickett, J. A., & Mumuni, A. (2007). Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a push?pull strategy. *Entomologia Experimentalis et Applicata*, 124(2), 201-211. https://doi.org/10.1111/j.1570-7458.2007.00569.x
- Koukal, B., Gueguen, C., Pardos, M., & Dominik, J. (2003). Influence of humic substances on the toxic effects of cadmium and zinc to the green alga *Pseudokirchneriella subcapitata*. *Chemosphere*, 53(8), 953-961. https://doi.org/10.1016/S0045-6535(03)00720-3
- Liang, J., Chen, C., Song, X., Han, Y., & Liang, Z. (2011). Assessment of heavy metal pollution in soil and plants from Dunhua sewage irrigation area. *Int J Electrochem Sci*, 6, 5314-5324.

- Lindsay, & Lyman, W. (1979). Chemical equilibria in soil. U.S: John Wiley.
- McLaughlin, G., Ji, T., & Napolitano, D. (2004). Material probing method for medical application, involves receiving echoes generated by interactions between ultrasound beam and material, and converting received echoes to generate echolocation data. In U. P. Office (Ed.), (A61B-008/00 ed., pp. 41). United States: Mclaughlin G; Ji T; Napolitano D; Zonare Medical Systems Inc.
- Mojiri, A. (2011). Effects of municipal wastewater on physical and chemical properties of saline soil. *J Biol Environ Sci*, 5(14), 71-76.
- N, R.-E., M, M., & D, P. (2018). Soil Pollution: a hidden reality. Rome: FAO.
- Nagajyoti, P., Lee, K., & Sreekanth, T. (2010). Heavy metals, occurrence and toxicity for plants: a review. . *Environ Chem Lett*, 8, 199-216. https://doi.org/10.1007/s10311-010-0297-8
- Nomngongo, P., Ngila, J., Msagati, T., & Moodley, B. (2013). Preconcentration of trace multi-elements in water samples using Dowex 50W-x8 and Chelex-100 resins prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-OES). *Physics and Chemistry of the Earth*, 66, 83-88. https://doi.org/10.1016/j.pce.2013.08.007
- Paoletti, M. G. (1999). Using bioindicators based on biodiversity to access landscape sustainability. *Agric Ecosys Environ*, 74, 1-8. https://doi.org/10.1016/B978-0-444-50019-9.50004-2
- Parrott, S. (2005). The quiet revolution: Push–pull technology and the african farmer.
- Pinto, E., Sigaud-Kutner, T. C., Leita o, M. A., Okamoto, O. K., Morse, D., & Colepicolo, P. (2003). Heavy metal-induced oxidative stress in Algae. *J Phycol*, 39(6), 1008-1018. https://doi.org/10.1111/j.0022-3646.2003.02-193.x
- Preer, J., Sekhon, H., & Stephens, R. (1980). Factors affecting heavy metals contents of garden vegetables. *Environ Pollut*, 1, 95-104. https://doi.org/10.1016/0143-148X(80)90030-0
- Pugh, R., Dick, D., & Fredeen, A. (2002). Heavy metals (Pb, Zn, Cd, Fe and Cu) contensts of plant foliage near the Anvil range leaf/zinc mine, Faro, Yukon Territory. *Ecotoxicol Environ Saf*, 52(3), 273-279. https://doi.org/10.1006/eesa.2002.2201
- Reeve, R., Bower, C., Brooks, R., & Gschwend, F. (1954). A comparison of the effects of exchangeable sodium and potassium upon the physical condition of soils. *Soil Science Society of America Journal*, 18(2), 130-. https://doi.org/10.2136/sssaj1954.0361599500 1800020004x
- Rodriguez-Eugenio, N., McLaughlin, M., & Pennock, D. (2018). Soil Pollution: a hidden reality. (pp. 156). Rome, Italy.
- Sardar, K., Ali, S., Hameed, S., Afzal, S., Fatima, S., Shakoor, M. B., et al. (2013). Heavy metals contamination and what are the impacts on living organisms. *Greener J Env Manag Pub Saf*, 2 (4), 172-179. https://doi.org/10.15580/GJEMPS.2013.4.060413652
- Shafer, M., Overdier, J., & Armstong, D. (1998). Removal, partitioning and fate of silver and other metals in wastewater treatment plants and effluent-receiving streams. *Environ Toxicol Chem*, 17(4), 630-641. https://doi.org/10.1002/etc.5620170416

- Swaileh, K., Hussein, R., & Abu-Elhaj, S. (2004). Assessment of heavy metal contamination in roadside surface soil and vegetation from the West Bank. *Arch Environ Contam Toxicol*, 47(1), 23-30. https://doi.org/10.1007/s00244-003-3045-2
- Thornton, I., Butler, D., Docx, P., & Hession, M. (2001). Pollutants in urban wastewater and sewage sludge. *Office for Official Publications Of The European Communities* (pp. 273). London.
- Walkley, A., & Black, I. A. (1934). An examination of the Degtijareff method for determining soil organic matter and a proposed modification of the chromic acid titration. *Soil Sci*, *37*, 29-37. https://doi.org/10.1097/00010694-193401000-00003
- WHO (2006). WHO Guidelines for the Safe Use of Wastewater, Excreta and Greywater. *Wastewater Use in Agriculture* (Vol. 2, pp. 222). Geneva.
- YSMO150/2001 (2001). Irrigation water SY (150/2000). (Vol. 150). Sanaa: Yemen Standardization, Metrology and Quality Control.
- Zurayk, R., Sukkariyah, B., & Baalbaki, R. (2001). Common hydrophytes as bioindicators of nickel, chromium and cadimium pollution. *Water Air Soil Pollution*, 127, 373-388. https://doi.org/10.1023/A:1005209823111