
 

European Journal of Engineering Science and Technology 
  eISSN 2538-9181 

 

______________________________ 
*Corresponding author E-mail address: ademola.adadeyeye@gmail.com 

 

Cite this article as:  

Adeyeye, A. D. & Oyawale, F. A. (2021). Lexicographic Multi-Objective Optimization Approach for Welding Flux System Design. 

European Journal of Engineering Science and Technology, 4(1):1-14. https://doi.org/10.33422/ejest.v4i1.593  

© The Author(s). 2022 Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License, 

which permits unrestricted use, distribution, and redistribution in any medium, provided that the original author(s) and source are credited. 

 

Lexicographic Multi-Objective Optimization Approach for Welding 

Flux System Design 
 

Ademola David Adeyeye* and Festus Adekunle Oyawale 

 

Department of Industrial and Production Engineering, Faculty of Technology, University of 

Ibadan, Nigeria 

 

ARTICLE INFO  ABSTRACT 

Keywords:  
Hierarchical Order of 

Importance 

Multiple Response 

Optimization 

Pareto Efficient Solution 

Priority Levels 

Welding Flux Ingredients 

 

 Multiple response optimization of welding flux performance has been 

found to be cost effective and useful for the achievement of the best 

balance among conflicting welding flux quality attributes. Many multi-

criteria optimization methods (MCOM) have been applied in flux 

formulation situations where flux quality attributes are of comparable 

importance. However, information on applications of MCOM to flux 

design situations where quality attributes are in hierarchical order of 

importance is scarce in the open literature. In this study, a 

Lexicographic Multi-objective Optimization (LMO) model was 

proposed for handling flux design situations in which the attributes are 

in hierarchical order of importance. The model was applied using data 

from literature. Two priority levels were used: acicular ferrite (AF) 

maximization was assigned first priority while the maximization of 

polygonal ferrite (PF) content and weld-metal impact toughness (WIT) 

were assigned second priority subject to oxygen content constraint of 

250 – 350ppm. The respective solutions for AF, PF, WIT and oxygen 

content were 51.19%, 21.80%, 23.70J at -20oC and 315ppm. The 

corresponding flux formulation was CaO (25.90), MgO (15.00),
CaF2 (31.10) and Al2O3(8.00%). Various priority structures were 

used to explore trade-off options and to generate three more pareto 

efficient solutions from which the flux formulator can select the most 

preferred one. The proposed model has filled the existing gap in the 

literature being a pioneering work in the application of lexicographic 

multi-objective optimization method in welding flux design.  

1. Introduction 

Welding flux design involves the consideration of many quality issues and characteristics that 

cover the entire lifecycle of the flux. Adeyeye & Oyawale, (2010 A) presented quality issues 

that affect each lifecycle stage of welding flux. For instance, matters that affect 

manufacturability of the flux such as extrudability and bonding are of concern to the 

manufacturer. To the welding and fabricating firm, storage requirements such as durability of 

flux coating and minimum moisture pick-up are important. Also, of importance are the 

operational requirements when the flux is put to use. Operational requirements such as arc 

stability, penetration control, spatter and slag detachability are among what determine the 

productivity of welding process. The health of welders and other environmental concerns 
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require that the welding flux generates minimum fumes, toxic materials and noxious odors 

during welding. It is also required that the flux should be able to produce a weld deposit that 

possesses the required chemical, mechanical and metallurgical features for optimal 

performance of the welded structure when put in service. All quality requirements at each 

lifecycle stage should be taken into consideration during welding flux design.  

The selection of the appropriate welding flux ingredients in their right proportions presents a 

big challenge in welding flux design because of the numerous quality specifications that often 

conflict with each other. There could also be conflict among stakeholders such as the 

manufacturer, welder/welding firm, user of welded structures and regulatory agencies. Due to 

conflict among the quality attributes and stakeholders, it is not possible to get a flux that will 

achieve the optimal values of all quality specifications simultaneously (Adeyeye et al., 2020). 

The target of the flux design process is to get a welding flux that achieves the best 

balance/compromise among the numerous quality attributes. In the last one decade, many 

multi-criteria optimization methods (MCOM) have been proposed for the design of flux to 

achieve the best compromise among the quality specifications (Adeyeye & Oyawale, 2009, 

2010 B, Kumar, 2019, Singh et al., 2015, Jindal et al., 2013, Jindal et al, 2014 A, 2014 B and 

Singh & Singh, 2016). Most of the MCOM used so far in welding flux design are based on 

the assumption that all the flux design objectives/quality attributes are of comparable 

importance (Sui et al., 2006, Adeyeye & Oyawale, 2010 A, Bhandari et al., 2016, Sharma & 

Chhibber, 2019 A, 2019 B and Kumar, 2019). In the real-world engineering design 

environments, situations arise where some design objectives are of overriding importance 

when compared to the rest objectives. In such situations, the objectives are arranged and 

treated in hierarchical order of importance and Lexicographic Multi-objective Optimization 

(LMO) methods are used to determine the best compromise solution (Adeyeye & Oyawale, 

2010 A). Although, there is a plethora of applications of LMO methods in engineering 

design, the applications of such methods are scanty in the welding flux design literature. The 

focus of this study, is to develop LMO model and solve the model to prescribe welding flux 

ingredient proportions that give the best balance among quality attributes that are in 

hierarchical order of importance. Literature review is presented in section two followed by a 

brief description of the pre-emptive optimization approach. Next, a numerical example is 

presented followed by the discussion of results and finally, the conclusion. 

2. Literature 

Interest of the welding flux research community has been on the increase since the early 

1900s when research papers on welding flux design started appearing in the open literature 

(Ogden, 1924, Spraragen, 1924, Dallam et al., 1985, Datta & Parekh, 1989). The approach of 

designing new welding flux was based on lengthy trial-and-test experiments involving many 

iterations (Adeyeye & Oyawale, 2008, Fleming et al., 1996, De Rissone et al., 2001. de 

Rissone et al., 2002, Farias et al., 2004, Du Plessis et al., 2006, 2007 and Du Plessis & Du 

Toit, 2007). For instance, Fleming et al, (1996) developed welding flux for SMAW of HSLA-

100 grade steel that would exhibit the excellent welding behavior found typically in a rutile 

electrode and balanced with the superior weld-metal properties deposited by a basic electrode 

using a sequential flux formulation methodology. Drawing upon the principles of physics, 

chemistry and metallurgy tempered with accumulated experience, the flux compositions were 

systematically varied starting with an initial flux that can be classified as rutile-based and 

ending up with a more basic flux. The flux development process involved nine iterations each 

with one substitution for a specific ingredient in the flux. The try-and-test approach is 

technically and economically inefficient, because of long lead-time and consumption of 

considerable amount of resources during lengthy experimental flux formulation and weld 
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production (Adeyeye & Oyawale, 2008). The drawbacks were due to the paucity of 

prediction and optimization tools. 

Kanjilal et al., (2004, 2005, 2006, 2007 A & 2007 B) used mixture experiments, a type of 

statistical design of experiment (DoE) to design experiments and the experimental data were 

used to develop regression equations for quality attributes such as weld-metal chemical 

composition, mechanical properties, microstructural features and process parameters. Apart 

from the usefulness of the regression equations for the prediction of quality attributes as a 

function of flux ingredients, their approach reduced the number of experiments and also 

provided insight into the direct and interaction effects of flux ingredients. The success of the 

application of DoE spurred other researchers to use DoE. Ren et al, (2006) used Uniform 

Design, Achebo and Ibhadode, (2008) used Hadamard Multivariate Design, Kumar, (2019) 

used Taguchi method while Singh et al., (2015) and Somal et al., (2015) used the Response 

surface method.  

Adeyeye and Oyawale (2009) extended the work of Kanjilal et al., (2004, 2005, 2006, 2007 

A, & 2007 B) by coupling it with mathematical programming method for the determination 

of optimal flux formulation for a single quality attribute case. This approach was novel but its 

usefulness was limited because the multiple attributes flux design cases are more common 

compared to the single attribute cases. Later, weighted-sum scalarization, non-pre-emptive 

GP, compromise programming and desirability function were suggested for multiple 

attributes flux design situations where the attributes are of comparable importance (Adeyeye 

& Oyawale, 2010 A). Pre-emptive GP was suggested for cases where some of the quality 

characteristics are of overriding importance when compared to the remaining quality 

characteristics (Adeyeye & Oyawale, 2010 A). In such instances, the quality characteristics 

are arranged in hierarchical or lexicographic order and solved sequentially. The optimization 

methods suggested for the cases where quality attributes are of comparable importance have 

been implemented and popularized by other researchers, while the cases where attributes are 

in lexicographic order have not received much attention (Somal et al., 2015, Rehal, 2015, 

Adeyeye & Allu, 2017, Mahajan & Chhibber, 2020, Mahajan et al., 2020 and Khan et al., 

2020).  

Flux situations where one or more attributes are of overwhelming importance when compared 

to the remaining attributes is yet to receive attention probably because the existence of such 

situation is yet to be identified. However, a careful look at the work of Kanjilal et al., (2007 

A) showed that situations where LMO method should be used exist in welding flux design. 

Kanjilal et al., (2007 A) observed that samples with higher volume fractions of acicular 

ferrite (AF) and lower grain boundary ferrite (GBF), side plate ferrite (SPF) and ferrite with 

aligned second phase (FAS) possessed higher strength and higher weld-metal impact 

toughness (WIT). This was in agreement with previous studies that optimum strength and low 

temperature WIT is achieved in HSLA weld-metals containing high volume fraction of AF in 

the columnar region (Farrar, 1987, Mcgrath et al., 1988, Jung-Soo et al., 2001, Rishi et al., 

2016, Mainak et al., 2018 and Beidokhti & Pouriamanesh, 2015). It was also observed that a 

sample with higher PF but identical AF, GBF, SPF and FAS volume fractions exhibited a 

higher WIT value than samples with lower PF volume fraction content in the microstructure. 

Generally, welding flux and welding process parameters are selected to obtain high 

proportion of AF in the weld-metal (Farrar, 1987, Mcgrath et al., 1988, Jung-Soo et al., 2001, 

Rishi et al., 2016, Mainak et al., 2018 and Beidokhti & Pouriamanesh, 2015). While AF is the 

primary contributor to improved mechanical properties, PF makes a secondary contribution 

as could be deduced from Kanjilal et al., (2007 A). The implication of this is that welding 

flux designer should give first priority attention to AF while PF receives second priority 

attention and LMO approaches are the most appropriate in such welding flux design 

circumstances.  
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3. Method 

3.1. Pre-emptive Optimization 

Multi-criteria optimization methods have been used in many areas of engineering and 

management decisions such as design, production, construction, operations and project 

managements among others (Niyazi et al, 2014, Biswas, et al., 2018, Movafaghpour, 2019, 

Mirzaei, 2019 and Olabanji, 2020). The LMO method is among the MCOM. It is suitable for 

decision situations in which a priori articulation of stakeholder(s) preferences is possible and 

objectives are in hierarchy of importance or priority levels. The first priority objective(s) 

is/are of overwhelming importance or significance when compared to the second priority 

objective(s) and the second priority objective(s) is/are of overwhelming importance compared 

to third priority objective(s) and so forth. The first priority objective(s) receives first priority 

attention while second priority objectives are given second priority attention and so forth. 

Objectives that are of comparable importance may be at the same priority level but weights 

are assigned to them to reflect their relative importance within the level (Adeyeye & 

Oyawale, 2010 A, Ojha and Biswal, 2009 and Arora, 2017). The procedure suggested below 

may be useful for the application of lexicographic/pre-emptive optimization method to 

welding flux design.  

Step 1: Identify the welding flux design criteria. Usually, the criteria are the quality 

attributes/specifications. Also, identify the nature of each objective if desirable or not. A 

desirable objective is a beneficial welding flux attribute for which higher values imply better 

performance. For instance, the ability of the flux to deposit weld-metal with higher volume 

fraction of AF is desirable. The AF content in weld-metal microstructure is beneficial and it 

should be maximized (Farrar, 1987, Mcgrath et al., 1988, Jung-Soo et al., 2001, Beidokhti & 

Pouriamanesh, 2015, Rishi et al., 2016 and Mainak et al., 2018). Non-desirable attributes are 

non-beneficial ones and common examples include diffusible hydrogen content, GBF, SPF 

and FAS where higher percentages or volume fractions in the weld-metal indicate poor 

performance and should therefore be minimized (Adeyeye et al., 2015).  

Step 2: Arrange the quality attributes in hierarchical order of importance based on the 

technology of the flux design problem. First priority attribute(s) 𝑝1 >>> second priority 

attribute(s), 𝑝2 >>> third priority attribute(s) 𝑝3>>> …. >>> 𝑝𝐼, the last priority level. Use 

DoE method to design experiment, conduct the experiments and use the experimental data to 

develop regression models for each of the attributes. The details of the DoE methods 

applicable to welding flux design have been described in the literature (Adeyeye & Oyawale, 

2008, Kanjilal et al., 2004, 2005, 2006, 2007 A, 2007 B, Achebo & Ibhadode, 2008, Kumar, 

2019, Singh et al., 2015 and Somal et al., 2015).  

Step 3: Use the regression equations (i.e., the response functions) of the quality attributes to 

build the LMO model by arranging the objective functions in hierarchical order of priority 

levels. The problem may be expressed as; find the values of 𝑥1, 𝑥2, … 𝑥𝑛 that maximize 𝑓𝑖,𝑗(𝑥) 

in lexicographic order subject to the constraints of the problem. Note that 𝑥𝑛 is the 

value/proportion of the 𝑛𝑡ℎ welding flux ingredient while 𝑓𝑖,𝑗(𝑥) represents the response 

equation of 𝑗𝑡ℎ quality attribute with 𝑖𝑡ℎ priority level. For 𝑗 > 1, we have 2 or more 

attributes at the same priority level. Such attributes are of comparable importance and are 

combined into single objective using standard weighting and normalization methods 

(Adeyeye & Oyawale 2010 A, 2010 B, Adeyeye & Allu 2017 and Movafaghpour, 2019). 

Mathematically, the LMO model is defined as;  
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𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒:                 𝑓𝑖,𝑗(𝑥) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜;                              
                                  𝑥 ∈ 𝑆

                                                            𝑓𝑖−1,𝑗(𝑥) = 𝑓𝑖−1,𝑗
∗

          

}
 

 

                                                      (1) 

The first constraint (𝑥 ∈ 𝑆) is the original technological/structural constraint while the second 

constraint represents the maximum value(s) of the immediate higher priority level. 

Step 4: Solve the lexicographic optimization model as follows: 

(i) First priority level objective(s) is/are solved first as a single-objective problem subject to 

all the original constraints. Let the maximum value of first priority attribute be 𝑓1,𝑗
∗ . Then 

we move to (ii).  

(ii) Second priority objective(s) is/are then solved again as a single-objective problem with 

an added constraint(s). The constraints are generally defined as 𝑓1,𝑗(𝑥) = 𝑓1,𝑗
∗ . Let the 

maximum value of the second priority attribute be 𝑓2,𝑗
∗ . Then we move to step (iii).  

(iii) Third priority attribute(s) are solved with 2 additional constraints added to the original 

constraints, 𝑓1,𝑗(𝑥) = 𝑓1,𝑗
∗  𝑎𝑛𝑑 𝑓2,𝑗(𝑥) = 𝑓2,𝑗

∗ . Generally, 𝑓𝑖−1,𝑗 (𝑥) = 𝑓𝑖−1,𝑗
∗  is added for 

each 𝑗 ∈ 𝐽𝑖−1 and 𝑖 ∈ 𝐼. Observe that index 𝑖, represent priority level while 𝑓𝑖−1,𝑗
∗  is the 

maximum value of the 𝑗𝑡ℎ objective function of the immediate higher-level priority and 𝐽𝑖 
is the total number of objectives at priority level 𝑖. Note that 𝑓𝑖−1,𝑗

∗  is not necessarily the 

same as the independent optimum/maximum of 𝑓𝑖−1,𝑗(𝑥). Their addition guarantee that 

improving the value(s) of lower quality attribute(s) does not diminish the 

performance/value(s) of the higher priority level attribute(s). The process is repeated, in 

which optimal solution obtained in the previous step is added as a new constraint, and the 

sequence of single-objective optimisation is solved, one problem at a time. The sequential 

solution process terminates once a unique optimum is determined. The unique optimum is 

identified when two consecutive optimization problems yield the same solution. 

4. Illustrative Example 

4.1. Development of the LMO Model 

The proposed LMO approach for prescribing flux ingredients proportions that give the best 

balance among various flux quality characteristics is demonstrated by integrating it with 

Kanjilal et al, (2004, 2005, 2006, 2007 A and 2007 B) approach. Some of the confirmed 

response equations developed by Kanjilal et al, (2004, 2005, 2006, 2007 A and 2007 B) were 

selected for illustrative purposes. The composition of the welding wire, base metal, welding 

parameters and the various flux compositions as per the statistical design of mixture 

experiment with their corresponding response values are presented in Tables 1 and 2, 

respectively. Bead-on-plate weld deposits were made at constant voltage (26 V), current (400 

amp), speed (4.65 mm/sec) and electrode extension (25mm) on 100mm × 250mm × 18mm 

low-carbon steel plate with each of the fluxes using 3.15 mm-diameter low-carbon steel filler 

wire in the SAW process. The chemical, mechanical and metallurgical features of weld-metal 

are determined by many factors and complex interactions between welding wire, base metal, 

welding thermal cycles, cooling rate, flux composition and process parameters. Kanjilal et al, 

(2004, 2005, 2006, 2007 A and 2007 B) used the same welding wire, base metal, thermal 

cycle, cooling rate and welding process parameters. Welding flux composition was the only 

thing that vary from experiment to experiment (see Table 2). Therefore, the observed 

variations in the values of flux quality attributes were determined by the flux composition. 

The proportions of flux ingredients (𝐶𝑎𝑂,𝑀𝑔𝑂, 𝐶𝑎𝐹2, 𝑎𝑛𝑑 𝐴𝑙2𝑂3) were varied from 

experiment to experiment. The problem is how to find the proportion of the various flux 

ingredients that will give the best balance or compromise among the various quality 
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characteristics while taking the hierarchical order of importance or priority levels of the 

attributes into account.  

 
Table 1. 

Base metal and filler wire composition 

Element 
Carbon 

(wt.%) 

Manganese 

(wt.%) 

Silicon 

(wt.%) 

Sulphur 

(wt.%) 

Phosphorus 

(wt.%) 

Nickel 

(wt.%) 

Oxygen 

(ppm) 

Nitrogen 

(ppm) 

Base metal 0.22 0.77 0.25 0.03 0.02 - 350 50 

Filler wire 0.10 0.56 0.05 0.02 0.01 - 380 60 

Source: Kanjilal et al., (2004, 2005, 2006, 2007 A, and 2007 B) 

 
Table 2. 

Experimental runs determined by mixture design and results 

E
x
p

er
im

e
n

t 

N
o

 

Flux composition  

(in wt. % of ingredient) 

Fixed proportion flux ingredients  

(wt. %) 
Flux quality attributes/response values 

CaO MgO CaF2 Al2O3 SiO2 Fe-Mn Fe-Si Ni Bentonite 
AF 

(wt.%) 

PF 

(wt.%) 

CIT at-

200C (J) 

𝐎𝟐 

(ppm) 

1 15.0 15.00 10.00 40.00 10.0 4.0 3.0 1.0 2.0 13 27 8.8 560 

2 15.0 15.00 40.00 10.00 10.0 4.0 3.0 1.0 2.0 12 27 9.8 570 

3 15.0 32.40 10.00 22.60 10.0 4.0 3.0 1.0 2.0 15 30 10.5 520 

4 15.0 17.00 40.00 8.00 10.0 4.0 3.0 1.0 2.0 14 30 9.8 500 

5 15.0 32.40 24.60 8.00 10.0 4.0 3.0 1.0 2.0 13 27 7.8 530 

6 35.0 15.00 10.00 20.00 10.0 4.0 3.0 1.0 2.0 24 24 22.2 580 

7 17.00 15.00 40.00 8.00 10.0 4.0 3.0 1.0 2.0 16 25 13.7 490 

8 35.00 15.00 22.00 8.00 10.0 4.0 3.0 1.0 2.0 19 29 14.4 480 

9 29.60 32.40 10.00 8.00 10.0 4.0 3.0 1.0 2.0 28 20 16.7 330 

10 35.00 27.00 10.00 8.00 10.0 4.0 3.0 1.0 2.0 16 29 14.7 480 

11 24.43 23.14 24.43 8.00 10.0 4.0 3.0 1.0 2.0 35 20 26.0 300 

12 15.67 15.67 40.00 8.66 10.0 4.0 3.0 1.0 2.0 26 24 15.8 350 

13 25.92 24.36 10.00 19.72 10.0 4.0 3.0 1.0 2.0 28 27 23.5 320 

14 23.40 15.00 24.40 17.20 10.0 4.0 3.0 1.0 2.0 36 25 25.5 300 

15 19.87 32.40 14.86 12.87 10.0 4.0 3.0 1.0 2.0 35 18 24.1 320 

16 15.00 22.36 24.92 17.72 10.0 4.0 3.0 1.0 2.0 10 31 9.1 600 

17 35.00 19.00 14.00 12.00 10.0 4.0 3.0 1.0 2.0 20 28 14.2 470 

18 22.67 21.63 21.63 14.07 10.0 4.0 3.0 1.0 2.0 16 28 11.6 540 

Source: Kanjilal et al., (2004, 2005, 2006, 2007 A, and 2007 B) 

Now consider a situation where the quality attributes of interest to the flux designer are AF, 

WIT, PF and Oxygen content of weld-metal. His/her preferences are determined a priori as 

follows: Acicular ferrite is at the first priority level while WIT and PF are at the second 

priority level. It is also required that the oxygen content in the weld-metal be in the range 

250-350ppm. The PF and WIT are presumed to be of equal importance, hence the weight 

assigned are 𝑤𝑃𝐹 and 𝑤𝑊𝐼𝑇 respectively and 𝑤𝑊𝐼𝑇 = 𝑤𝑃𝐹 = 0.5. The problem is to find the 

proportions of 𝐶𝑎𝑂,𝑀𝑔𝑂, 𝐶𝑎𝐹2, 𝑎𝑛𝑑 𝐴𝑙2𝑂3 to use in the flux formulation such that AF is 

maximized at first priority level while WIT and PF receive second priority attention subject 

to 𝑂2 content constraint and the other technological constraints of the problem. The priority 

structure, response equations from Kanjilal et al, (2004, 2005, 2006, 2007 A and 2007 B) and 

direction of optimization are presented in Table 3. The lexicographic multi-objective 

optimization model is presented in Eq. 2. Note that the lower and upper limits of the flux 

ingredients, 𝐶𝑎𝑂,𝑀𝑔𝑂, 𝐶𝑎𝐹2, 𝑎𝑛𝑑 𝐴𝑙2𝑂3 as per the technology of the flux formulation 

problem are the constraints of the model. Experiments were performed using different 

priority structures (i.e., cases 2, 3 and 4). The priority structure for cases 2, 3, and 4 

respectively are presented in Table 4. In all cases, attributes that are at the same priority level 

are presumed to be of equal importance. In real world flux formulation, quality attributes at 

the same priority level may have different weights depending on the situation.  
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Although, this is an illustrative example to demonstrate the feasibility of the application of 

LMO to welding flux design, we have tried to be realistic in setting the priority structure. For 

instance, as discussed in Section 2 and in agreement with previous studies, higher AF volume 

fraction in weld-metal microstructure improves weld-metal mechanical properties (Farrar, 

1987, Mcgrath et al., 1988, Jung-Soo et al., 2001, Beidokhti & Pouriamanesh, 2015, Rishi et 

al., 2016 and Mainak et al., 2018). The contribution of PF to the improvement of mechanical 

properties is marginal and far below that of AF (Kanjilal et al., 2007 A). Hence, AF was 

assigned first priority while PF receive second priority attention. The WIT is an important 

weld-metal property and may be given first or second priority attention depending on the goal 

of optimization and the technology of the flux design problem. Oxygen content requirement 

was also set realistically between 250 and 350ppm because previous studies have proposed 

that the optimum oxygen content in high strength low alloy steel is in the range 200-350ppm 

(Potapov, 1993 and Seo, 2013). The oxygen content constraint was put at 250-350ppm which 

is within the optimum range specified in the literature. 

The LMO model is given by; 
𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝑓𝐴𝐹                                                                ( 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝑓𝑃𝐹                                                            ( 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝑓𝑊𝐼𝑇                                                          ( 𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜;                                                                                                       
                   𝑥𝐶𝑎𝑂 + 𝑥𝑀𝑔𝑂 + 𝑥𝐶𝑎𝐹2 + 𝑥𝐴𝑙2𝑂3 = 80            (sum of the proportions  

                                                                                                of 𝐶𝑎𝑂,𝑀𝑔𝑂, 𝐶𝑎𝐹2, 𝑎𝑛𝑑 𝐴𝑙2𝑂3) 

                         15 ≤ 𝑥𝐶𝑎𝑂 ≤  35                     (𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐶𝑎𝑂 𝑖𝑛 𝑓𝑙𝑢𝑥)

                           15 ≤ 𝑥𝑀𝑔𝑂 ≤  32.40             (𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑀𝑔𝑂 𝑖𝑛 𝑓𝑙𝑢𝑥)

                        10 ≤ 𝑥𝐶𝑎𝐹2 ≤  40                (𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐶𝑎𝐹2 𝑖𝑛 𝑓𝑙𝑢𝑥)

                       8 ≤ 𝑥𝐴𝑙2𝑂3 ≤  40               (𝑙𝑜𝑤𝑒𝑟 𝑎𝑛𝑑 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝐴𝑙2𝑂3 𝑖𝑛 𝑓𝑙𝑢𝑥)

                        250 ≤ 𝑓𝑂2 ≤ 350            (Oxygen content in weld − metal constraint)

                                 }
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(2) 

where 𝑥𝐶𝑎𝑂, 𝑥𝑀𝑔𝑂, 𝑥𝐶𝑎𝐹2  and 𝑥𝐴𝑙2𝑂3 are the respective proportions of 𝐶𝑎𝑂,𝑀𝑔𝑂, 𝐶𝑎𝐹2, and 

𝐴𝑙2𝑂3 while 𝑓𝐴𝐹 , 𝑓𝑃𝐹 , 𝑓𝑊𝐼𝑇 and 𝑓𝑂2  are as defined in Table 3. 

 
Table 3. 

Response equations with priority structure of quality attributes 

S/N 
Quality 

Attribute 
Response equation Kanjilal, et al, (2004, 2005, 2006, 2007 A and 2007 B) 

Flux designer’s 

desires 

1 Acicular ferrite 

𝑓𝐴𝐹 = −4.8335𝑥𝐶𝑎𝑂 + 2.0808𝑥𝑀𝑔𝑂 − 0.3680𝑥𝐶𝑎𝐹2 − 0.6867𝑥𝐴𝑙2𝑂3
+ 0.0756𝑥𝐶𝑎𝑂𝑥𝑀𝑔𝑂 + 0.1551𝑥𝐶𝑎𝑂𝑥𝐶𝑎𝐹2
+  0.1701𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 −  0. 0731𝑥𝑀𝑔𝑂𝑥𝐶𝑎𝐹2
− 0.0721𝑥𝑀𝑔𝑂𝑥𝐴𝑙2𝑂3 − 0.0068𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 

maximize at first 

priority level 

2 
Polygonal 

ferrite 

𝑓𝑃𝐹 = 2.2848𝑥𝐶𝑎𝑂 − 1.2764𝑥𝑀𝑔𝑂 + 0.3102𝑥𝐶𝑎𝐹2 + 0.1682𝑥𝐴𝑙2𝑂3
− 0.0135𝑥𝐶𝑎𝑂𝑥𝑀𝑔𝑂 − 0.0540𝑥𝐶𝑎𝑂𝑥𝐶𝑎𝐹2
− 0.0646𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 + 0.0461𝑥𝑀𝑔𝑂𝑥𝐶𝑎𝐹2
+ 0.0656𝑥𝑀𝑔𝑂𝑥𝐴𝑙2𝑂3 + 0.0145𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 

maximize at 

second priority 

level 

3 

Weld-metal 

impact 

toughness 

𝑓𝑊𝐼𝑇 = −3.31038𝑥𝐶𝑎𝑂 + 0.62389𝑥𝑀𝑔𝑂 − 0.26209𝑥𝐶𝑎𝐹2 − 0.84441𝑥𝐴𝑙2𝑂3
+ 0.06680𝑥𝐶𝑎𝑂𝑥𝑀𝑔𝑂 + 0.10098𝑥𝐶𝑎𝑂𝑥𝐶𝑎𝐹2
+ 0.12913𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 − 0. 03063𝑥𝑀𝑔𝑂𝑥𝐶𝑎𝐹2
− 0.02394𝑥𝑀𝑔𝑂𝑥𝐴𝑙2𝑂3 − 0.00737𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 

maximize at 

second priority 

level 

4 Oxygen 

𝑓𝑂2 = 5186𝑥𝐶𝑎𝑂 − 1064𝑥𝑀𝑔𝑂 + 533𝑥𝐶𝑎𝐹2 + 1359𝑥𝐴𝑙2𝑂3 − 6171𝑥𝐶𝑎𝑂𝑥𝑀𝑔𝑂
− 10314𝑥𝐶𝑎𝑂𝑥𝐶𝑎𝐹2 − 13419𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3
+  5602𝑥𝑀𝑔𝑂𝑥𝐶𝑎𝐹2 + 5055𝑥𝑀𝑔𝑂𝑥𝐴𝑙2𝑂3
+ 2397𝑥𝐶𝑎𝑂𝑥𝐴𝑙2𝑂3 

Range 250-

350ppm 
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Table 4. 

Priority structure for the various cases 
Cases First Priority Second Priority 

1 AF WIT, PF 

2 PF AF, WIT 

3 WIT AF, PF 

4 AF, PF WIT 

 

4.2. Solution and Experiment 

The lexicographic multi-objective model was solved using the procedure described in step 4 

of section 3. 

(i) The first priority objective (maximize 𝑓𝐴𝐹) was solved subject to the original constraints 

of the problem to obtain the maximum or the ideal volume fraction of acicular ferrite 

(𝑓𝐴𝐹
∗ ) in the weld-metal under the existing conditions. With all the lower priority 

objectives removed, the model is expressed as follows: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝑓𝐴𝐹                                                                ( 𝑓𝑖𝑟𝑠𝑡 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜;                                                                                                       
                   𝑥𝐶𝑎𝑂 + 𝑥𝑀𝑔𝑂 + 𝑥𝐶𝑎𝐹2 + 𝑥𝐴𝑙2𝑂3 = 80              

                         15 ≤ 𝑥𝐶𝑎𝑂 ≤  35                    
                           15 ≤ 𝑥𝑀𝑔𝑂 ≤  32.40             

                        10 ≤ 𝑥𝐶𝑎𝐹2 ≤  40                

                       8 ≤ 𝑥𝐴𝑙2𝑂3 ≤  40             

                        250 ≤ 𝑓𝑂2 ≤ 350            }
 
 
 
 

 
 
 
 

               (3) 

 

All the models were solved using Lingo 18 software. The maximum/ideal value of the 

volume fraction of acicular ferrite in the weld-metal microstructure is 𝑓𝐴𝐹
∗  =51.19% under the 

existing conditions. Observe that the value(s) attribute(s) obtained from the solution of a 

higher priority level becomes a constraint in the lower priority level. Hence, 𝑓𝐴𝐹
∗  =51.19% 

becomes a constraint in the next step.  

(ii) Next, the second priority objectives (𝑓𝑃𝐹 𝑎𝑛𝑑 𝑓𝑊𝐼𝑇) were normalized and then combined 

into one function. The combine objective was then solved as a single-objective problem 

with all the constraint in Eq. 3 and additional constraint (i.e., 𝑓𝐴𝐹 = 𝑓𝐴𝐹
∗ = 51.19) from 

the solution of Eq. 3. The model to be solved is given by Eq. 4: 

 
𝑀𝑎𝑥𝑖𝑚𝑖𝑠𝑒, 𝐹 =  𝑓𝑃𝐹

𝑁 + 𝑓𝑊𝐼𝑇
𝑁                                                   (𝑠𝑒𝑐𝑜𝑛𝑑 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜;                                                                                                       
                   𝑥𝐶𝑎𝑂 + 𝑥𝑀𝑔𝑂 + 𝑥𝐶𝑎𝐹2 + 𝑥𝐴𝑙2𝑂3 = 80              

                         15 ≤ 𝑥𝐶𝑎𝑂 ≤  35                    
                           15 ≤ 𝑥𝑀𝑔𝑂 ≤  32.40             

                        10 ≤ 𝑥𝐶𝑎𝐹2 ≤  40                

                       8 ≤ 𝑥𝐴𝑙2𝑂3 ≤  40             

          250 ≤ 𝑓𝑂2 ≤ 350

          𝑓𝐴𝐹 = 51.19   }
 
 
 
 

 
 
 
 

   (4) 

 

Observe that 𝑓𝑃𝐹
𝑁  and 𝑓𝑊𝐼𝑇

𝑁  are the normal forms of 𝑓𝑃𝐹 𝑎𝑛𝑑 𝑓𝑊𝐼𝑇 respectively and 𝐹 is the 

combined function. Normalization was done using the weights (𝑤𝑊𝐼𝑇 = 𝑤𝑃𝐹 = 0.5) and 

following the approach described in (Adeyeye & Oyawale, 2010, A and Adeyeye, et al., 

2020). The final solution of the LMO gives 𝑥𝐶𝑎𝑂
∗ , 𝑥𝑀𝑔𝑂

∗ , 𝑥𝐶𝑎𝐹2
∗ 𝑎𝑛𝑑 𝑥𝐴𝑙2𝑂3

∗  which are the 
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proportions of flux ingredients that give the best balance among the corresponding values of 

flux quality attributes (𝑓𝐴𝐹
∗ , 𝑓𝑃𝐹

∗  and 𝑓𝑊𝐼𝑇
∗ ).  

 

4.3. Results and Discussion 

The results of the LMO for the flux design problems are presented in Table 5. The 

proportions of the flux ingredients, oxygen content in the weld-metal and the values of 

acicular ferrite, impact toughness and polygonal ferrite were obtained for each case. In all the 

cases, the desire of the flux formulator to achieve oxygen content within the range 250 and 

350ppm was realized. For all the cases, the LMO was able to achieve the best balance among 

the attributes without deteriorating the value(s) obtained for higher level priority. For 

instance, in case 1, the second priority attributes (polygonal ferrite and weld-metal impact 

toughness) were maximized (see Eq. 4) without deteriorating the ideal value (51.19%) 

obtained for AF by solving Eq. 3. Although the 51.19% for acicular ferrite is the 

ideal/optimum value, it does not imply that the LMO algorithm and the single objective 

model will give the same result. The LMO algorithm searches among the alternative solutions 

to Eq. 3 to identify the one that maximizes the lower priority level attributes (i.e., PF and 

WIT) without compromising the value obtained for AF in case 1 (see Table 5.). The attribute 

value (𝑓𝐴𝐹
∗ ) obtain for AF may not be the same as the individual optimum of AF. For 

example, in case 4 where AF and PF were assigned first priority, the value obtained for 𝑓𝐴𝐹
∗ , 

was 50.80% as against 51.19% when AF was the sole attribute in priority 1. This is so 

because the solution is a compromise between the volume fraction of AF and PF. 

 
Table 5. 

Results of the Lexicographic Multi-objective Optimization Problem 

C
a

se
 Flux Quality Attributes 

Flux composition (in wt. % of 

ingredient) 

Acicular 

ferrite, 𝐟𝐀𝐅
∗  

(%) 

Weld-metal 

impact toughness, 

𝐟𝐖𝐈𝐓
∗  [at -200C (J)] 

Polygonal 

ferrite, 𝐟𝐏𝐅
∗  

(%) 

Oxygen, 

𝐟𝐎𝟐(ppm) 
𝐂𝐚𝐎 

(𝐱𝐂𝐚𝐎
∗ ) 

𝐌𝐠𝐎 

(𝐱𝐌𝐠𝐎
∗ ) 

𝐂𝐚𝐅𝟐 

(𝐱𝐂𝐚𝐅𝟐
∗ ) 

𝐀𝐥𝟐𝐎𝟑 

(𝐱𝐀𝐥𝟐𝐎𝟑
∗ ) 

1 P1 (51.19) P2 (23.70) P2 (21.80) 315 25.90 15.00 31.10 8.00 

2 P2 (35.05) P2 (22.92) P1 (25.50) 350 30.77 21.06 10.00 18.17 

3 P2 (42.40) P1 (28.90) P2 (20.20) 250 27.20 15.00 31.10 27.80 

4 P1 (50.80) P2 (23.70) P1 (22.20) 318 26.55 15.00 30.45 8.00 

 

The LMO approach provides some flexibilities to the welding flux formulator. For instance, 

the flux formulator may want to explore trade-off options available to him or to generate the 

pareto efficient solutions for evaluation so that he could be properly guided in selecting the 

most preferred solution. The trade-off options enable the flux formulator to know how much 

he/she needs to give up in one or more attributes in order to gain improvement in one or more 

of the other attributes. For example, the value of AF content dropped from 51.19 to 50.80% 

while the value of PF increased from 21.80 to 22.20% for cases 1 and 4 respectively. 

Different weight structures may also be used either alone or in combination with different 

priority structures for trade-off exploration. As a result of conflict among the attributes, it is 

impossible to find a point within the attribute space at which all the attributes would assume 

their optimum/ideal values simultaneously. The LMO approach always give nondominated 

solutions as indicated in Table 5. The flux formulator need not use trial-and-error again when 

handling attributes that are in hierarchy of importance. 

5. Conclusion  

A multi-criteria optimization method known as lexicographic multi-criteria optimization 

model was proposed for the achievement of best balance among conflicting flux quality 
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attributes in flux design situations where attributes are in various priority levels. The major 

conclusions are as follows: 

(i) Situations where welding flux quality attributes are in hierarchical order of importance 

exist in welding flux formulation as illustrated by the contribution of acicular ferrite and 

polygonal ferrite to weld-metal mechanical properties. 

(ii) Some quality attributes may be introduced into the optimization model as constraints as 

the case of oxygen content in the weld-metal instead of limiting the constraints to the 

lower and upper bounds of flux ingredients. 

(iii) The lexicographic multi-criteria model was able to prescribe the proportion of various 

flux ingredients that give the best realization of the objectives of the flux formulator. 

(iv) The model provides increased flexibility to the flux formulator to use different priority 

structures and/or weights to explore trade-off options and to also generate more pareto 

efficient solutions for him/her to choose the most preferred welding flux formulation.  

(v) The proposed model has filled the existing gap in the literature being a pioneering work 

in the application of lexicographic multi-objective optimization method in welding flux 

design.  
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