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ARTICLE INFO ABSTRACT

Keywords: Improve the reliability of the gas and oil transportation process is a
Corrosion primary objective of the pipeline designers because it interests the
Electrochemistry safety of the goods and the people, the availability and the performance
Monitoring of pipelines as well as the economy of the hydrocarbon transport.
Pipeline Corrosion is a present phenomenon that occurs inside and outside of
Sensor buried pipes, causing the pipeline to be pierced, leading to gas and oil

leaks and causes consequences of the major economic losses. In this
context, our study focused on the corrosion monitoring of metals used
in the transport of hydrocarbons by two approaches based on
electrochemical techniques. Monitoring the evolution of the corrosion
potential using an elaborated reference instead of a commercial
reference electrode, and by electrochemical impedance spectroscopy
(EIS) coupled with the gravimetric method. The obtained results
showed the efficiency of our approach for the realization of a corrosion
sensor intended for the monitoring of corrosion in pipelines.

1. Introduction

Pipelines are the most practical, economical, and safest way of transporting hydrocarbons
around the world. A study done by Green and Jackson (2015), comparing the safety of
transporting hydrocarbons by pipelines versus rail, revealed that both ways are safe, but
pipelines are considered the safest mean of hydrocarbon transportation. Pipelines can suffer
from different types of defects, such as corrosion, stress corrosion cracking (SCC), fatigue
cracks, dent, etc (Hussain et al., 2020; Nanninga et al., 2010; Cosham & Hopkins, 2003).
These defects, if not properly managed, can result in pipeline failures, including ruptures and
leaks, which could lead to extensive hazards to people and damage to assets and the
environment. There are many pipeline accidents every year around the world, and three of the
North American pipelines accidents in 2016 resulted in over 2,000 metric tons of oil and gas
leak and spill (Xie & Tia, 2018). Recently, corrosion has become a major concern for the oil
and gas industry. Moving pipelines to safer operating conditions is the primary goal of all
pipeline owners.
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Various methods have been used to prevent and control corrosion in oil and gas pipelines,
which includes proper selection of materials, use of inhibitors and application of protective
coatings.

e Material selection (Craig, 2008) is fundamental when considering engineering design for
corrosion mitigation. Before selecting the pipeline material, it is necessary to know as
much information as possible about the operating environment and the material behavior
in it. The overwhelming majority of pipelines worldwide are constructed from carbon
steel due to its availability, low cost and good mechanical properties (Moosavi, 2017).
Duplex stainless steel is also widely used in pipes, mainly because it exhibits a good
combination of mechanical properties and high corrosion resistance (Nilsson, 1992).

¢ Inhibitors have been used in the oil and gas industry to modify the process environment in
order to limit and control corrosion processes. The inhibitors are injected into pipelines
and are absorbed on the inner wall to form a passive film that acts as a protective layer to
prevent direct contact with the fluid (Kartsonakis et al., 2020).

e Protective coatings have been used to prevent external surface areas from being in direct
contact with the corrosive environment and therefore hinder the flow of ions through the
electrolyte, therefore limiting corrosion (Ammar et al., 2018). The most common types of
coatings used in the oil and gas industry are: paint (Tezdogan & Demirel, 2014), Fusion-
bonded epoxy, Three-Layer Polyolefin (Romano & Adhesives, 2005), etc.

Despite the massive investments in pipeline protection technologies, corrosion is never
completely prevented. For example, it can be pointed out that although the protective coating
has excellent corrosion resistance, it is susceptible to failure in harsh operating environments.
Therefore, corrosion monitoring represents the main solution for this problem. Corrosion
monitoring aims to monitor the condition of pipelines, identify the environmental variables
that can influence the corrosion process, and also determine if the corrosion protection
methods in place are effective or not. Corrosion monitoring includes non-electrochemical and
electrochemical techniques.
Corrosion coupon is a non-electrochemical monitoring technique that involves the use of test
coupons of the same pipe materials. The coupons were exposed to the corrosive environment
for a given period of time and then retrieved for visual inspection, microscopy, and weight
loss analyses in order to obtain corrosion information (Ameh et al., 2017).
An interesting alternative to the traditional coupon technique is the electrical resistance (ER)
technique described in ASTM Standard (ASTM G96-90, 2001) and International
Organization for Standardization (ISO 11844-2, 2005). Several sensors have been developed
according to the principle of the electrical resistance method, and applied in different fields,
inclining in the hydrometallurgical industry (Hren et al., 2021), the automotive sector (Kosec
et al., 2019), in nuclear waste management (Marja-aho et al., 2018), and in other general
applications (Gartner et al., 2016; Kourli et al., 2014; Huang et al., 2016). In the oil and gas
industry, Xu et al. (2016) proposed a sensor to monitor corrosion of pipes in real-time via an
electrical resistance. He found that the electrical resistance increases as the wall becomes
thinner due to corrosion.

The electrochemical techniques, like potential measurements, Electrochemical Impedance

Spectroscopy (EIS), and Linear Polarization Resistance (LPR) are also used for corrosion

monitoring. These techniques have been adapted for in situ application by using probes, and can

therefore provide important information about the state of metallic objects. Several probes have
been made in the last few decades. Among these, we cite:

e LPR-based corrosion detection (Connolly et al., 2015) is the most commercialized method
among the electrochemical probes due to its relatively simple operation and data
interpretation. For most of the commercial LPR probes, the electrodes are often made of
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the same material instead of following a conventional electrochemical three-electrode
system (Wright et al., 2019).

e EIS in-situ corrosion sensor has been developed by Davis et al. (1998) to monitor
corrosion of boiler tubes, pipes, and painted structures. The sensor was successful in all
applications, especially in the painted structure where corrosion was detected starting
from the initial stages of corrosive species ingress through the paint film and an incipient
attack of the underlying metal.

e Potential probes (referred to as reference electrode) are generally implemented for the
purpose of monitoring the potentials of buried or immersed metallic structures (Brenna et
al., 2017).

The aim of this paper is to present the results of the corrosion monitoring of different metals
and to determine their suitability for use in a saline environment. Corrosion monitoring was
performed by two electrochemical techniques: EIS coupled with gravimetric test and
potential measurements test. During the potential measurements test, a reference electrode
was made and the protectiveness of the coatings was evaluated. The results obtained help to
identify the best metal in order to produce a sensor for corrosion monitoring in pipelines
exposed to sea air. This sensor will be made from the same metal used in the pipes.

2. Materials and Methods

2.1. Chemical Composition

Three metals (API 5L X42 Carbon Steel, Cast Iron GGG40 and Lean Duplex Stainless Steel
LDX 2101) were used in this study. The chemical compositions of the metals were evaluated
by an optical emission spectrometer type “FOUNDRY-MASTER Pro”. The results are shown
below:

Table 1.
Chemical composition of API 5L X42 carbon steel
Elements C Mn P S Nb Ti \
% (by mass) 0.154 0.694 0.0236 0.0098 <0.004 <0.001 0.0015
Table 2.
Chemical composition of cast iron GGG40
Elements Fe Mo Al Cu Mn \4 P Cr Ni
% (by mass) 82.8 0.0517 <0.0050  0.383 0.107 0.005 0.0437 0.0196 0.0517
Elements Ti Co W C S Pb Nb Si

% (by mass) 0.0123 < 0.005 0.325 3.325 0.004 0.108 <0.005 1.57

Table 3.
Chemical compositions of lean duplex stainless steel 2101
Elements C Cr Ni Mn Si Mo P S Cu

% (by mass)  0.0212 16.6 10.3 1.94 0.255 2.15 0.0283 0.015 0.322

2.2. Preparation of the Samples and Tests Solution

Two different types of samples were prepared for each metal. First, the metals were cut into
four small specimens. One specimen was used in the electrochemical impedance
spectroscopy measurements and the other three were used in the potential measurements. The
samples used for the EIS test were mechanically polished with different grades of emery
paper, rinsed with double distilled water, cleaned with acetone, and finally dried with warm
air, while the samples used for the potential measurements test were connected with copper
wire, embedded in epoxy resin, leaving only the top cross-section exposed as working area,
then polished and cleaned in the same way as before.

36



European Journal of Engineering Science and Technology, 4(2): 34-44, 2021

The test solution 3 wt.% NaCl was prepared from analytical grade reagents and distilled
water.

2.3. Electrochemical Impedance Spectroscopy Measurements

The study of this process was carried out by EIS technique combined with gravimetric
method. Gravimetric tests were performed according to the ASTM Standard (ASTM G31-72,
2004). The samples were exposed to 3 wt.% NaCl solution for a period of 10 days. The
samples were weighed with an electronic weighing balance before and after exposure to
obtain the weight loss. During the exposure period, EIS was measured daily. EIS
measurements were performed in a conventional three-electrode cell, including a working
electrode (API 5L X42, GGG40, LDX 2101), an Ag/AgCl in 3.5 M KCI as a reference
electrode, and a platinum plate as a counter electrode. The three electrodes were connected to
a Potentiostat/Galvanostat model VersaStat 3 controlled by a computer using VersaStudio
software. EIS scans were made from 100 KHz to 10 mHz with 10 points per decade and an
AC amplitude of 10 mV.

2.4. Potential Measurements

The corrosion monitoring of metals can be performed by obtaining the potential of the metal
with the use of Ag/AgCl 3.5 M KCI reference electrode or any other suitable reference
electrode. In our case the reference is not a commercial electrode but it was made from the
same metal as those used as a working electrode.

2.4.1. Manufacturing of the reference Electrodes

Two different reference electrodes have been manufactured. The first reference (RE1) was
made using the surface of the embedded sample which has been divided into two identical
parts: one part of the metal is exposed to the corrosive environment and corrodes, while the
other is protected against corrosion by a paint coating, and serves as a reference. This kind of
reference has been used in a previous study by Li et al. (2019). The second reference
electrode (RE2) is the embedded sample whose work area has been completely covered with
an appropriate coating in order to protect the metal surface from the corrosive environment.
Different coatings have been applied to the metal, including an epoxy resin, a transparent
barrier, and paint. It should be noted that the work of Huang et al. (2016) motivated us to
develop this kind of reference electrode.

2.4.2. Measurements

The potential measurements were carried out in a typical two-electrode cell, taking the
uncovered metals as a working electrode and the covered metals as a reference electrode. The
two electrodes were connected to a Potentiostat/Galvanostat in order to perform the test. The
tests were carried out in a 3 wt.% NaCl solution at room temperature.

3. Results and Discussion

3.1. Electrochemical Impedance Spectroscopy and Weight Loss Measurements

The main objective of our study is to manufacture a sensor intended to monitor the corrosion
of pipes in a real marine environment. The sensor will be made from the same metal as those
used as structural metal in the pipes. In this context, a study of the electrochemical impedance
spectroscopy coupled with the gravimetric test was carried out on three different metals
coming from the pipes. The impedance diagrams are given in the Nyquist representation. Fig.
I(a), 1(b) and, 1(c) show the electrochemical impedance spectra of carbon steel, cast iron,
and duplex stainless steel respectively in 3 wt.% NaCl solution at room temperature as a
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function of immersion time. According to the shape of the electrochemical impedance spectra
obtained for the three metals, a single semicircle was observed, indicating the presence of the
charge transfer phenomenon. The diameter of the semicircle represented the charge-transfer
resistance. This charge-transfer resistance has been calculated from the difference in
impedance at high and low frequencies on the real axis. Electrochemical impedance
spectroscopy has often been used to gain insight into the electric characteristics of the surface
oxide layer, such as resistive and capacitive behavior (Pan et al., 1998). In fig. 1(a), it can be
noted that the capacitive effect depends on the immersion time since the imaginary part of the
curves decreased with the increase of immersion time. As well, the charge-transfer resistance
decreased over time. The reason is that the aggressive species (such as Cl) has been
penetrated to the metal surface and induced corrosion. As shown in fig. 1(b), that after four
days of exposure, the solution resistance increases. This increase can be explained by the fact
that the solution has been changed. For example, the solution has become less conductive. It
should be noticed that the solution resistance was obtained by crossing at high frequencies of
the semicircle with the real axis. As shown in fig. 1(c), that in the first stage of immersion, a
huge charge-transfer resistance can be seen in the impedance plane, which explains the
difficulty of seeing a complete semicircle. By the third day, it has been found that the charge-
transfer resistance decreased with the increase of immersion time, due to chloride ions that
were gradually penetrated to the metal surface and interacted with the oxide film, leading to
the dissolution of oxide film and the corrosion of duplex stainless steel.
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Figure 1. Impedance diagram in Nyquist representation of (a) carbon steel, (b) cast iron and (c)
duplex stainless steel as a function of the immersion time

By comparing the charge-transfer resistance of the three metals seems to indicate that the
charge-transfer resistance of duplex stainless steel is higher than those of carbon steel and
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cast iron, revealing that the surface film of duplex stainless steel presents higher resistance to
the charge transfer process.

The mass loss obtained after immersing carbon steel, cast iron, and duplex stainless steel in 3
wt.% NacCl solution over a period of 10 days is shown in fig. 2. As can be observed, the cast
iron sample showed a weight loss around 31 mg followed by carbon steel sample 27 mg,
while the lowest mass loss around 1 mg corresponded to the duplex stainless steel sample.
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Figure 2. Weight loss of carbon steel, cast iron, and duplex stainless steel after immersion in 3
wt.% NaCl for a period of 10 days

So, the results of weight loss measurements after 10 days of exposure are thus in good
agreement line with that obtained with the EIS measurements.

3.2. Potential Measurements

In this part, different reference electrodes were manufactured and used in a potential
measurements test in order to select the most suitable reference electrode and to evaluate the
level of corrosion protection provided by the coating.

The potential measurements test can be considered as the most effective method to monitor
corrosion activities in pipelines. Oki et al. (2015) conducted research indicating that corrosion
monitoring of external pipelines using potential measurements is really necessary and should
be performed regularly at least once in a year in order to avoid catastrophic consequences.
Performing a potential measurement test requires a reference electrode (RE).

The reference electrodes used in this study were carbon steel protected by coatings against
corrosion. The potential measurements were carried out in 3 wt.% NaCl solution at room
temperature. The results are presented in fig. 3. Fig. 3(a) presents the evolution of the
corrosion potential of the uncovered part of carbon steel with respect to the covered part
(referred to as REi) over time. It can be seen that the potential remained stable at
approximately -0.92 mV vs. RE: during the test. The reason is that the reference part does not
the ability to follow the change in potential of the exposed part and, therefore, it cannot be
used as a reference electrode. Fig. 3(b), 3(c), and 3(d) present the evolution of the corrosion
potential of carbon steel with respect to carbon steel entirely covered with epoxy resin,
transparent barrier, and paint respectively (referred to as RE2) as a function of time. In fig.
3(b), it can be observed that the potential decreases throughout the exposure period. The
corrosion potential values of the carbon steel estimated by the manufactured reference were
unrealistic, due to the thick coating presented into the metal surface. The thickening of the
coating does not allow the exchange of charge between the electrode-electrolyte interface and
therefore, this reference cannot be used. From fig. 3(c), it can be seen that at the beginning of
the exposure, the potential gradually increased, and after approximately 1040 s a value of
nearly -35 mV vs. RE2 was reached. The potential then remained almost constant and after
1800 s, there was a destabilization. This is due to the coating failure areas, where the carbon
steel is in direct contact with the solution, and this will lead to corrosion of the reference
electrode. In this case, the reference electrode will give an erroneous estimate of the corrosion
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potential value. Therefore, it can be deduced that the transparent coating was a bad choice to
produce the reference electrode, since the coating applied on the surface was not able to
provide protection from the corrosive environment for a long period of time. From fig. 3(d) it
can be observed, that the initial corrosion potential of the carbon steel was approximately -
246 mV vs. RE2, and then it gradually decreased to reach over 1000 s a steady value at nearly
-374 mV vs. RE2. The potential remained stable until the end of the test. This result might be
explained by the fact that the coating was intact and there was no misalignment, or damage
indicating that the paint coating applied over the carbon steel provides sufficient protection
even under aggressive exposure conditions (Lyon et al., 2017). In this case, it can be
concluded that the corrosion data collected by the manufactured reference are reliable and
effective.
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Figure 3. Corrosion potential evolution of the carbon steel electrode with respect to the carbon steel

6000

electrode covered (a) partially with paint, entirely with (b) epoxy resin, (c) transparent barrier, and (d)

paint over time

Based on the last result, it has been decided to apply paint coating to cast iron and duplex
stainless-steel samples, and to test them in a potential measurements test to assess their
effectiveness. The potential measurements were carried out in a 3 wt.% NaCl solution at
room temperature. The results are shown in fig. 4. Fig. 4(a) shows the evolution of the
corrosion potential of cast iron with respect to painted cast iron over time. It can be noted that
at the beginning of the exposure, the potential took a stable state, due to the presence of a
protective film that isolates the metal from the aggressive solution. After 7500 s, the potential
decreased. This decrease was explained by the penetration of corrosive species such as
oxygen and chloride through the protective film and then corrosion of cast iron. Thereafter,
the potential gradually increased towards more positive values. This was explained by the
formation of a layer of corrosion products covering the whole surface of cast iron. Fig. 4(b)
shows the evolution of the corrosion potential of duplex stainless steel with respect to painted
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duplex stainless steel over time. According to the shape, it can be seen that in the first
moments following the immersion of the sample, the potential of the duplex stainless steel
took a value close to -90 mV vs. RE2. The potential remained stable during a period; this is
due to the formation of a Cr rich, passive oxide film into the duplex stainless steel surface
which is highly resistant to the corrosive environment. After 5000 s, the potential increased
slightly due to passivation, and then decreased sharply. This decrease indicates the rupture of
the passive film, which made it possible for corrosion to occur.
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Figure 4. Evolution of potential difference between the uncoated and coated (a) cast iron, and (b)
duplex stainless steel electrode with paint over time

As can be observed from fig. 4(a) and 4(b), the potential has not reached a stable state despite
long exposure. The stability of the potential is very important and it is one of the main
requirements for a satisfactory reference electrode. It has been reported by Szabo and Bakos
(2010), that a good reference electrode should be easy to prepare, reach the equilibrium state
fast, and keep it firm, it should be non-polarizable and exhibit environmentally friendly
properties. According to these proprieties, the carbon steel electrode has been chosen as the
most suitable reference electrode.

4. Conclusion

The conclusions drawn from the results of the experiments are as follows:

e The results obtained from electrochemical impedance spectroscopy, gravimetric, and
potential tests allowed us to select the most suitable metal for the realization of a sensor
intended for corrosion monitoring in pipelines exposed to sea air. Despite the excellent
corrosion resistance of duplex stainless steel, they have not given feasible results in the
potential test. So, the best choice was going for carbon steel.

e The main parameters adopted from the potential difference test were the influence of the
metal surface, the choice of the type of coating used, and its thickness. The coating should
be very thin, expected to provide corrosion protection and ensure the transfer of charges at
the interfaces generated by the contact between the electrode metal and the electrolyte.
The paint coating has provided the best protection against the saline environment.

e Potential measurements test can be considered a reliable tool for corrosion monitoring in
pipelines. It should be performed regularly in order to avoid catastrophic consequences.
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